
Geoderma 285 (2017) 94–109

Contents lists available at ScienceDirect

Geoderma

j ourna l homepage: www.e lsev ie r .com/ locate /geoderma
Hyper-temporal remote sensing for digital soil mapping: Characterizing
soil-vegetation response to climatic variability☆
Jonathan J. Maynard ⁎, Matthew R. Levi
USDA-ARS, Jornada Experimental Range, P.O. Box 30003, MSC 3JER, New Mexico State University, Las Cruces, NM 88003, United States
Abbreviations: κ, kappa statistic; PCC, percent correctly
type; RS, remote sensing; SVM, support vector machine.
☆ Mention of a proprietary product does not constitute

products by the U.S. Government or the authors and does
clusion of other products that may be suitable.
⁎ Corresponding author at: USDA-ARS, Jornada Exper

MSC 3JER, New Mexico State University, Las Cruces, NM 8
E-mail address: jonathan.maynard@ars.usda.gov (J.J. M

http://dx.doi.org/10.1016/j.geoderma.2016.09.024
0016-7061/Published by Elsevier B.V.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 30 April 2016
Received in revised form 22 August 2016
Accepted 21 September 2016
Available online xxxx
Indices derived from remotely-sensed imagery are commonly used to predict soil properties with digital soil
mapping (DSM) techniques. The use of images from single dates or a small number of dates is most common
for DSM; however, selection of the appropriate images is complicated by temporal variability in land surface
spectral properties. We argue that hyper-temporal remote sensing (RS) (i.e., hundreds of images) can provide
novel insights into soil spatial variability by quantifying the temporal response of land surface spectral properties.
This temporal response provides a spectral ‘fingerprint’ of the soil-vegetation relationshipwhich is directly relat-
ed to a range of soil properties. To evaluate the hyper-temporal RS approach, this study first reviewed and syn-
thesized, within the context of temporal variability, previous research that has used RS imagery for DSM.
Results from this analysis support the notion that temporal variability in RS spectra, as driven by soil and climate
feedbacks, is an important predictor of soil variability. To explicitly evaluate this idea and to demonstrate the util-
ity of the hyper-temporal approach, we present a case study in a semiarid landscape of southeastern Arizona,
USA. In this case study surface soil texture and coarse fragment classeswere predicted using a 28 year time series
of Landsat TM derived normalized difference vegetation index (NDVI) and modeled using support vector ma-
chine (SVM) classification, and results evaluated relative to more traditional RS approaches (e.g., mono-, bi-,
andmulti-temporal). Results from the case study show that SVM classification using hyper-temporal RS imagery
wasmore effective inmodeling both soil texture and coarse fragment classes relative tomono-, bi-, ormulti-tem-
poral RS, with classification accuracies of 67% and 62%, respectively. Short-term transitions betweenwet and dry
periods (i.e., b6 months) were the dominant drivers of vegetation spectral variability and corresponded to the
general timing of significant RS sceneswithin in our SVMmodels, confirming the importance of spectral variabil-
ity in predicting soil texture and coarse fragment classes. Results from the case study demonstrate the efficacy of
the hyper-temporal RS approach inpredicting soil properties and highlights howhyper-temporal RS can improve
currentmethods of soil mapping efforts through its ability to characterize subtle changes in RS spectra relating to
variation in soil properties.
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1. Introduction

Spectral indices derived from satellite imagery are important predic-
tors used for digital soil mapping (DSM) (e.g., Boettinger et al., 2008;
Grunwald, 2009; McBratney et al., 2003; Peng et al., 2015; Scull et al.,
2003). DSM studies typically incorporate spectral indices from one or
two image dates (or composites) into soil prediction models (i.e.,
classified; PFT, plant functional
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mono- and bi-temporal), with far fewer instances of DSM models that
incorporate multiple image dates (i.e., multi-temporal analysis). These
trends are largely the result of: (i) historical barriers (e.g., financial,
computational, analytical) that have prevented the use of high frequen-
cy imagery, and (ii) an underappreciation of the unique information en-
capsulated within the temporal response of land surface spectral
properties. Recent technological and methodological advancements in
thefield of remote sensing (RS) are providing newopportunities for uti-
lizing spectral indices derived from high frequency imagery stacks (e.g.,
MODIS, Landsat) for the modeling of soil properties and classes. Con-
trary to prior soil models that encapsulate a ‘static’ spectral view of
the landscape (i.e., mono-temporal analysis), the use of hyper-temporal
RS (i.e., hundreds of images) can uncover the temporal response of bio-
physical properties at the Earth's surface (e.g., vegetation), which in
turn are linked in predictable ways to soil properties. In this paper we
argue that hyper-temporal RS can provide novel insights into soil spatial
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variability by quantifying the temporal response of each image pixel
across a landscape.

Spectral indices provide information on soil properties and classes ei-
ther directly through the imaging of bare soils (e.g., mineral indices, see
Ben-Dor et al., 2008), or indirectly through the use of vegetation indices
(e.g., NDVI) (Mulder et al., 2011). Given the predominance of vegetation
across the Earth's land surface, a large portion of DSM efforts have incor-
porated vegetation indices into soil prediction models (Grunwald, 2009;
Mulder et al., 2011). However, temporal variability in vegetation spectra
resulting from seasonal changes in phenology and/or inter-annual soil-
vegetation feedbacks to climate (e.g., El Nino-Southern Oscillation) can
produce spurious results depending on the image date(s) chosen to de-
rive vegetation indices. Consequently, previous studies using RS vegeta-
tion indices for DSM have employed two different methodologies to
account for temporal variability. The first andmost commonmethodolo-
gy is to control for temporal variability by acquiring imagery that charac-
terizes ‘normal’ conditions represented by an annual mean or multi-year
mean composite image (Hengl et al., 2003; Page et al., 2013), or alterna-
tively by a single image acquiredduring a specific timeof year (e.g., annu-
al peak biomass, dry season) (Chagas et al., 2013; Taghizadeh-Mehrjardi
et al., 2015). The second and less commonmethodology is to characterize
the temporal variability in vegetation spectra by utilizing bi-temporal
(two images) or multi-temporal (three or more images) imagery,
which can characterize differences in plant phenology, aswell as changes
driven by the soil-vegetation response to changes in climate.

While soil properties are largely static relative to vegetation, soils
modulate the response of vegetation to climatic variability and in
particular climatic extremes (i.e., physiological response to prolonged
drought or elevated rainfall). Consequently, through quantifying
temporal variability in land surface spectral properties (e.g., NDVI) we
can gain greater insight into the spatial distribution of soil properties
that regulate vegetation response (e.g., soil texture, water holding
capacity, soil nutrient status). Changes in vegetative status occur on
intra-annual time scales, reflecting increasing or decreasing plant vigor
in response to available moisture. Alternatively, changes in fractional
vegetation cover reflect an inter-annual response to prolonged periods
of drought or abnormal wetness. From a remote sensing perspective, a
single RS image provides a ‘snapshot’ of surface properties (e.g., variabil-
ity in surface greenness relating to the distribution of plant functional
types); however, areas identified as having similar spectral properties
in a given image may experience vastly different temporal responses
to variation in precipitation or temperature. Consequently, the accurate
prediction of soil properties based on the soil-vegetation relationship
and its response to climatic variability requires ameasurement frequen-
cy that can adequately characterize these temporal dynamics. Thus, in
contrast to bi-temporal and multi-temporal RS approaches which char-
acterize seasonal and/or inter-annual variability at coarse temporal res-
olutions, hyper-temporal RS can characterize both intra- and inter-
annual variability at a high temporal resolution, allowing the detection
of subtle changes in RS spectra relating to soil variability. The temporal
response of vegetation spectra derived from hyper-temporal RS pro-
vides a spectral ‘fingerprint’ of the soil-vegetation-climate relationship
which is directly related to a range of soil properties. It should be recog-
nized, however, that in highly managed ecosystems where the spectral
signature of the landscape is artificially manipulated (e.g., agriculture),
this approach will not likely produce reliable results unless those spec-
tral changes can be accounted for (e.g., compiling all scenes across a
time series when the area of interest is in corn production).

This study had twomain objectives. Thefirst objectivewas to review
and synthesize, through the lens of temporal variability, previous
research examining the use of RS imagery for DSM. The second main
objective of this study was to test the utility of using hyper-temporal
Landsat NDVI for predicting surface soil texture and coarse fragment
classes in a semiarid landscape of southeastern Arizona, USA; and
to evaluate these results relative to more traditional RS approaches
(e.g., mono-, bi-, or multi-temporal).
2. Review and synthesis of RS applications for DSM: accounting for
temporal variability

A wide range of RS data is now available for most regions of the
worldwhich presentsmany opportunities for predicting soil properties;
hence, several reviews have been devoted to the use of RS in soil map-
ping (Grunwald et al., 2015;Mohanty, 2013;Mulder et al., 2011). A cen-
tral premise in the estimation of soil properties using RS data is the
existence of a predictable relationship between the spectral response
measured by the sensor and the magnitude of the property of interest
(Wulder et al., 2004). Several factors affect this relationship including
the optical properties of the land surface (e.g., soil color, soil roughness,
vegetation structure, leaf spectral properties); the effects caused by the
spatial and temporal resolution of the sensor relative to the spatial
structuring and temporal dynamics of the landscape; and finally
environmental factors such as topography, sun elevation, and haze
(Kerr and Ostrovsky, 2003). Consequently, the coupling of remote sens-
ing and soil measurements has often producedmixed results due to the
effects of the above stated factors, and in particular the inadequate ac-
counting of temporal variability in RS spectra.

A summary of recent studies that have applied RS vegetation indices
for soil property prediction is presented in Table S1. Our review of the
literature was focused on howDSM studies account for and utilize tem-
poral variability in RS spectra with a specific focus on the use of vegeta-
tion indices as covariates. DSM studies that utilize RS account for
temporal variability in different ways and can be generally organized
into four categories according to the number of images used: mono-
temporal, bi-temporal, multi-temporal, and hyper-temporal.

Mono-temporal analysis, or the use of a single image, is the most
common type of RS used for DSM.Mono-temporal analysis is most suit-
ed for properties that are temporally static, such as geology, parent ma-
terial and other soil properties that can be identified by characterizing
land surface color. For example, features like iron oxide, carbonate rad-
icals, clay hydroxides, calcareous sediment, gypsiferous and natric soils
are effectively identified with indices from multi-spectral RS (Bachofer
et al., 2015; Boettinger et al., 2008; Nield et al., 2007). These types of
applications require either adequate detection of the soil background
(e.g., areas with minimal vegetation, periods of plant senescence) or
the imaging of bare soils which requires the removal of all non-soil
pixels (e.g., vegetation, water) prior to model development (Bachofer
et al., 2015; Dutta et al., 2015; Nawar et al., 2015; Shabou et al., 2015).
However, in many regions of the world the imaging of bare soils is not
feasible due to extensive vegetation cover. As a result, many soil predic-
tionmodels have applied vegetation indices (often in concertwith other
indices) derived from single image dates to predict a wide range of
properties such as soil organic matter, salinity, phosphorus, physical
soil properties and soil classes (Table S1). Since vegetation indices are
temporally dynamic, the timing of imagery acquisition can strongly in-
fluence model development. To account for this, many studies have
adopted the technique of aggregating multiple image dates to a single
value (e.g., mean, maximum), which produces a representative, high
quality image for a study area (Hengl et al., 2003; Kunkel et al., 2011;
Page et al., 2013; Walker et al., 2003). For example, Page et al. (2013)
produced an integrated NDVI representing the sum of both five and
10 year NDVI time series data to map soil carbon. Even though this ap-
proach utilizes multiple image dates, it does not exploit the temporal
variability of image spectra within the model. While mono-temporal
RS has been shown to be effective in predictingmany soil properties, in-
corporating additional spectral variability (i.e., bi-temporal or multi-
temporal RS) can improve model predictions for some soil properties
(Blasch et al., 2015).

Bi-temporal RS, or the use of two images within a year or between
years, is used to capture high magnitude changes in RS spectra/indices
that may enhance soil prediction models (e.g., seasonal variation, soil
moisture status). A common approach is to acquire imagery during
both ‘wet’ and ‘dry’ conditions to capture phenological variation of
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vegetation (Heung et al., 2016; Rivero et al., 2007). For example,
Brungard et al. (2015) created indices (including NDVI) from Landsat
scenes representing both peak and non-peak vegetation growth to pre-
dict soil taxonomic groups and found that for a semi-arid region of New
Mexico, indices from the ‘wet’ scene were more important than those
from the ‘dry’ scene. The bi-temporal approach has been used to map
soil properties such as salt-affected soils, phosphorus, taxonomic
groups, and soil landscape classes, which illustrates the utility of strate-
gically incorporating multiple image dates into soil prediction models
(Table S1).

Multi-temporal RS is characterized as having more than two image
dates. This approach captures intra- and/or inter-annual variability at
coarse temporal resolutions, and generally includes either a seasonal
time series or a multi-year time series where images are collected dur-
ing the same time of year (e.g. peak biomass). Time series of NDVI are
effective in identifying differences in soil properties and land degrada-
tion across a range of landscapes (Lozano-Garcia et al., 1991; Omuto
and Shrestha, 2007; Schmidt and Karnieli, 2000). Multi-year image
analysis from the same time of year is used to characterize inter-annual
variability and has been effective in modeling soil properties. For exam-
ple, Omuto and Shrestha (2007) used 11 Landsat scenes from the driest
month of the year to predict soil degradation classes and hydraulic soil
properties in easternKenya. Basnyat et al. (2005) used repeated Landsat
NDVI from the same time following seeding to develop soil manage-
ment zones in southwestern Saskatchewan. Relative to mono- or bi-
temporal image analysis, multi-temporal image analysis has been
more commonly used to predict dynamic soil properties like organic
matter, soil moisture, water table depth and gas flux (Table S1). Multi-
temporal RS is also useful for predicting static properties such as taxo-
nomic groups (Dobos et al., 2001; Lozano-Garcia et al., 1991) and soil
texture (Shabou et al., 2015) due to the influence these properties
have on the temporal dynamics of vegetation spectra.

The majority of studies presented in Table S1 represent mono-tem-
poral RS (30 studies); with seven bi-temporal, and 19 multi-temporal
studies. While our analysis identified 30 DSM studies from recent
years (~20 years) that used mono-temporal RS, given the widespread
and long-term use of RS over the past four decades there are likely ad-
ditional examples not included in our review. Despite these potential
omissions, it is clear that, (i) mono-temporal RS has been an important
covariate inmanyDSMmodels, (ii) theuse ofmulti-temporal RS inDSM
studies is increasing, and (iii) incorporating increasing RS spectral vari-
ability into DSM warrants additional research to explicitly examine its
potential for improving soil prediction models.

3. Modeling soil properties using hyper-temporal remote sensing: a
case study in a semi-arid ecosystem

Hyper-temporal RS is capable of characterizing both intra- and inter-
annual variability at a high temporal resolution, thus allowing the de-
tection of subtle changes in RS spectra relating to variation in soil prop-
erties. Prior constraints (e.g., imagery cost, computational efficiency) on
using hyper-temporal RS in DSM studies no longer exist due to contin-
ued advancements in the field of remote sensing. These advancement
include: (i) free and open distribution of imagery (e.g., Landsat, see
Woodcock et al., 2008), allowing the creation of dense pixel-based
time series; (ii) significant advancements in image pre-processing
(e.g., Landsat Ecosystem disturbance Adaptive Processing System
(LEDAPS) algorithm) creating comparable imagery across time; (iii) in-
creases in computation capacity, in particular cloud-based computing
platforms such as Google Earth Engine (e.g., global-scale processing of
Landsat, see Hansen et al., 2013); and (iv) advances in time series
algorithms using high temporal resolution satellite image stacks
(Kennedy et al., 2014; Main-Knorn et al., 2013; Verbesselt et al.,
2010). Furthermore, advances in statistical data mining techniques
(e.g., artificial neural networks, decision trees and support vector ma-
chines) have become powerful tools for predicting soil properties
using large multivariate datasets (Brungard et al., 2015; Heung et al.,
2016; Taghizadeh-Mehrjardi et al., 2015). With these advancements it
is now possible to use hyper-temporal RS image stacks to model the
spatial distribution of soil properties and classes, and in particular
those soil properties that regulate the temporal response of land surface
biophysical properties (e.g., vegetation). Several recent examples have
emerged, demonstrating the efficacy of hyper-temporal RS in predicting
soil hydraulic properties such as water holding capacity (Araya et al.,
2016), static soil properties such as taxonomic classes (Li et al., 2012),
and dynamic soil properties like soil organicmatter (Poggio et al., 2013).

In this study, we tested the efficacy of hyper-temporal RS for
predicting soil texture and coarse fragment classes in an arid ecosystem
in southeastern Arizona, USA. While previous studies have shown that
aboveground productivity is highly correlated to precipitation in arid
ecosystems (Jenerette et al., 2010; Williamson et al., 2012), recent
work indicates that soil moisture largely controls aboveground green-
ness (Kurc and Benton, 2010; Schnur et al., 2010; Shepard et al., 2015;
Wang et al., 2007). Soil texture exerts a dominant control on soil mois-
ture conditions in arid ecosystems (i.e., b370mmof precipitation), with
coarse surface textures having the highest aboveground productivity
due to rapid infiltration during rainfall events and reduced evaporative
losses due to a lowwater-holding capacity (i.e., inverse texture hypoth-
esis: Sala et al., 1988, 2015). Soil texture further influences soil moisture
dynamics, with finer subsurface textures retaining moisture near the
surface where it is available to shallow-rooted species (e.g., grasses)
and coarser subsurface textures allowing deeper infiltration where it
is only available to plants with extensive root systems (e.g., woody spe-
cies) (McAuliffe, 1994; Shepard et al., 2015). Consequently, previous re-
search has shown that grasses aremore resilient to drought in soils with
a high water holding capacity in the upper 1-m of the soil profile, while
woody species tend to dominate on soils that promote deep infiltration
(i.e., N1 m) (Gibbens et al., 2005; Yao et al., 2006).

As a result, variation in soil texture results in different temporal re-
sponses of soil moisture availability under changing climatic conditions,
which in turn results in changes in vegetation characteristics, like vege-
tative condition (i.e., greenness) and fractional cover (changing phenol-
ogy), that can be captured by optical remote sensing through detecting
changes in spectral bands (e.g., near-infrared and visible reflectance
bands) and/or indices (e.g., NDVI). For example, subsurface soil
moisture (e.g. N30 cm) has been linked to measures of greenness at
local spatial scales using soil moisture sensors and pheno-cams, provid-
ing evidence for edaphic controls on the spectral response of vegetation
(Kurc and Benton, 2010). Additionally, previous studies have found
links between NDVI and surface moisture (Farrar et al., 1994) and
NDVI and root zone soil moisture (Adegoke and Carleton, 2002) at
broad spatial scales. Accurate prediction or adequate differentiation be-
tween contrasting classes requires a measurement frequency that can
detect subtle variation in temporal responses. Thus, a main objective
of this study was to test the utility of using hyper-temporal Landsat
NDVI for predicting surface soil texture and coarse fragment classes.
Specific objectives were to: (i) examine RS spectral variability through
time and its relationship to soil texture and coarse fragment classes,
(ii) examine the relationship between precipitation and NDVI spectral
variability, and (iii) evaluate the use of SVM classification for predicting
soil texture and coarse fragment classes using hyper-temporal Landsat
NDVI, as compared to more traditional RS approaches. We predict
hyper-temporal spectral ‘fingerprints’ of different portions of the land-
scape will prove useful for modeling the spatial variability of soil
properties.

4. Methods

4.1. Study area

The study area is a 6065 ha landscape in southeastern Arizona locat-
ed 30 kmnorth of the city ofWilcox in Cochise County (Fig. 1). Elevation
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Fig. 1. Location of the study area (6265 ha) in a semiarid rangeland landscape of southeastern Arizona. The distribution of sampled locations from initial soil survey transects and a
conditioned Latin Hypercube design (cLHS) (Levi and Rasmussen, 2014) represented the distribution of soil survey map units (black lines).
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ranges from 1273 to 1655 m above sea level within the study area and
adjacent mountain ranges to the east and west have maximum eleva-
tions of 3267 and 2336 m, respectively. Parent materials are primarily
sedimentary basin fill deposits in the form of alluvial fans ranging in
age from Holocene to early Miocene-aged (~20 Ma) materials
(Reynolds et al., 2000; Wilson and Moore, 1958). A large portion of
the study area is comprised of relatively easily discernable parentmate-
rials where granitic alluvium dominates the eastern portion and volca-
nic alluvium and basalt hills make up the western portion. The center
of the study area is a mixture of lacustrine deposits that contain abun-
dant soluble salts including carbonates and gypsum (Melton, 1965). A
recent soil survey mapped Argiustolls, Paleargids, Haplocambids,
Haplogypsids, Gypsitorrerts, Torrifluvents, Torriorthents, riverwash
and rock outcrop within the study area (Soil Survey Staff, 2011). A
more detailed description of the study area can be found in Levi and
Rasmussen (2014).

The study area has a semiarid climate and receives a bi-modal distri-
bution of rainfall during the summer andwinter withmean annual pre-
cipitation ranging from 403 to 472 mm (PRISM Climate Group, 2008).
Spatial and temporal patterns of precipitation are largely controlled by
the North American Monsoon system (Sheppard et al., 2002) resulting
in unique responses of vegetation (Sponseller et al., 2012).Mean annual
air temperature is approximately 16.5 °C with a range from 9 to 25 °C.
The soil moisture regimes are aridic and ustic and the soil temperature
regime is thermic (15–22 °C) (Soil Survey Staff, 2011).

Vegetation in the study area is characteristic of semi-desert grass-
land and includes a variety of grasses, forbs, shrubs, leaf succulents,
and cacti common to the Chihuahuan and Sonoran Deserts (Brown
and Lowe, 1978; Brown, 1982). Upland landscape positions are general-
ly dominated by perennial grasses (Bouteloua spp., Eragrostis spp.) with
scattered shrubs (Prosopis spp., Larrea tridentata) whereas drainages
have greater shrub cover. In some portions of the lowland landscapes
subject to flooding, monotypic stands of Sporobolus wrightii are present,
which is a large, warm-season, perennial bunchgrass common to south-
eastern Arizona that can grownearly 2m in height (Casady et al., 2013).

4.2. Sample design, field sampling and laboratory analyses

Soil samples were available from two different sources. Field tran-
sects for initial soil survey efforts of the southwestern part of Graham
County Arizona, USA (Soil Survey Staff, 2011) were collected in 2010.
We used soil profile descriptions for 54 point locations within our
study area that included estimates of surface soil texture class from
hand texturing of experienced NRCS soil scientists. An additional 52
points were sampled as part of a related research study (Levi and
Rasmussen, 2014). Field locations for the research study were
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determined with a conditioned Latin Hypercube (cLHS) sample design
(Minasny andMcBratney, 2006) using environmental covariates select-
ed with an iterative principle component data reduction (Levi and
Rasmussen, 2014). A total of 52 soil profiles were sampled by genetic
soil horizon from 0 to 30 cm in April and May of 2011. Air-dried soils
were sieved through a 2 mmmesh and pretreated with sodium acetate
(NaAOc - pH5) to remove soluble salts and sodiumhypochlorite (NaOCl
- pH 9.5) to remove organic matter (Jackson, 2005). Following disper-
sion with sodium hexametaphosphate, soil particle size distribution
was determined using a Beckman Coulter LS 13 320 Laser Diffraction
Particle Size Analyzer. Surface soil texture class for the research samples
were determined from laboratory sand, silt and clay fractions. Detailed
descriptions of the samplingdesign and laboratory analyses from the re-
search study are presented in Levi and Rasmussen (2014).We excluded
a total of three sample pointswith underrepresented soil texture classes
(n b 3) to facilitatemodel development and a total of 103 sample points
were used.We elected tomodel texture class because sand, silt, and clay
estimates were not available for the soil survey field transects which ac-
count for half of our 103 final sample points.

4.3. Standardized precipitation index

To evaluate the effects of precipitation patterns on the general avail-
ability of soil moisture for plants (i.e., wet or dry soil conditions), we
used daily precipitation data from a nearby (~15miles away) meteoro-
logical station that is part of the Arizona Meteorological Network
(http://ag.arizona.edu/azmet/index.html; Bonita station) to calculate
the standardized precipitation index (SPI) between the years 1987–
2011. The SPI is a probability-based indicator that depicts the degree
to which accumulative precipitation for a specific time period departs
from the average state (Mckee et al., 1993). Since the SPI is standard-
ized, an index of zero indicates the median precipitation amount (i.e.,
normal conditions), while drought conditions are indicated by negative
values (i.e.,−2 for exceptionally dry) and wet conditions are indicated
by positive values (i.e., 2 for exceptionally wet). SPI can be calculated
across a range of time scales, with short time scales (i.e., weeks),
representing event-driven changes in water availability, relating to dy-
namic ecosystem properties (e.g., annual grass emergence); and longer
time scales (i.e., years) relating to the cumulative effects of prolonged
drought or wetness (e.g., vegetation dieback or shifts in plant functional
types). In arid regions with highly seasonal distributions of precipita-
tion, the SPI calculated at very short time scales (b1 month) has been
shown to produce unreliable results for characterizing abnormal dry-
ness or wetness due to the high occurrence of no-rain cases which re-
sults in a highly skewed distribution (Wu et al., 2007). Consequently,
we selected time scales ranging from 1 to 36 months, to characterize
both short- and long-term patterns.

4.4. Landsat image acquisition and pre-processing

All available Landsat -Thematic Mapper (TM) imagery between
1984 and 2012 (16-day frequency)was acquired fromUSGS ESPA, total-
ing 530 scenes (Path 33/Row 37). The Landsat imagery was ortho-
corrected and radiometrically calibrated to surface reflectance with
the LEDAPS algorithm (Masek et al., 2006). Quality assessment (QA)
masking was performed using the CFMASK algorithm (Zhu and
Woodcock, 2014), masking all pixels identified as containing clouds,
cloud shadow, water, or snow. Missing observations due to QAmasking
or missing scenes (i.e., Landsat 5 scenes processed through NLAPS),
were infilled for each pixel-based time series using linear interpolation.
The infilling procedure resulted in a complete 16-day time series from
June 6, 1984 to October 14, 2011, totaling 627 scenes.

Normalized difference vegetation index (NDVI) is the most com-
monly used band ratio in ecological research and has been widely
used in rangeland studies, although with varying levels of success
(Anderson et al., 1993; Kawamura et al., 2005; Purevdorj et al., 1998;
Sankey andWeber, 2009; Wylie et al., 2002; Zha et al., 2003). The limi-
tations of using NDVI in arid ecosystems have been well documented,
including the effects of exposed soil, standing dead vegetation and litter
on the spectral response (Gao et al., 2000; Huete, 1988; Richardson and
Wiegand, 1977). Despite these limitations, preliminary analysis using
NDVI and MSAVI (Modified Soil Adjusted Vegetation Index) showed
that NDVI produced more accurate results in model prediction. The
Landsat TM surface reflectance product contains a precomputed NDVI
layer that was used in this study. NDVI is calculated from the red and
NIR band values using the standard formula of:

NDVI ¼ ρNIR−ρRedð Þ= ρNIR þ ρRedð Þ ð1Þ

A seasonal-trend time series decomposition procedure based on
local polynomial regression fitting (LOESS) smoothing was performed
on each pixel stack (n = 70,634), decomposing the time series into
trend, seasonal, and remainder components (Cleveland et al., 1990).
The trend and seasonal components were recombined, resulting in a fil-
tered seasonal-trend time series for each pixel stack. The remainder
component contains signal noise that was not removed during the
prior preprocessing steps, in addition to a fraction of the true signal
that the seasonal and trend models were unable to fit. This small loss
of information associated with model fitting was considered acceptable
given the increase in signal-to-noise ratio resulting from the filtering
procedure. Fig. 2 illustrates the connection between Landsat time series
decomposition and the soil prediction model. All image processing was
done using R statistical software (R Core Team, 2015). Time series de-
composition was done using the ‘stl’ function in the ‘stats’ package.
The linear interpolation infilling procedure was done using the ‘zoo’
package (Zeileis and Grothendieck, 2005).

4.5. Soil prediction model

Support vector machine (SVM) classification models were devel-
oped using the caret package (Kuhn, 2008) in R (R Core Team, 2015)
to predict soil texture class and coarse fragment class across the study
area. SVM is a supervised classification technique based on statistical
learning theory that has gained popularity in the environmental sci-
ences due to its effectiveness as a non-linear classifier in high dimen-
sional spaces (Yang et al., 2006). In the machine learning process, a
dataset that is representative in the domain of interest is used to train
the machine learning algorithm, where it ‘learns’ the connections be-
tween features of the training data and a specified target concept (e.g.,
soil texture class). Additionally, SVMmodels performwell when trained
with sparse and noisy input data and are highly resistant to overfitting
(Kuhn and Johnson, 2013). Thus SVM models are highly generalizable,
which allows for appropriate predictions from out-of-sample data.

SVMmodel developmentwas performed by first selecting an appro-
priate kernel and determining optimal hyper-parameters relating to the
selected kernel based on a tuning procedure. In this study we used the
radial-basis kernel which is one of the most commonly used SVM ker-
nels in soil and environmental studies (Twarakavi et al., 2009). Optimal
estimation of SVMhyper-parameters was performed using a grid-based
search approach, where all possible combinations of hyper-parameters
were modeled using the training dataset, with each model evaluated
using 10-fold cross-validation. Hyper-parameters from the cross-vali-
dated model with the highest kappa statistic (κ) where chosen and
used in subsequent model building (see Section 4.6 for more details
about κ).

Four types of SVMmodels were created:mono-temporal, bi-tempo-
ral, multi-temporal, and hyper-temporal. Mono-temporal models
consisted of a single image that approximated annual maximum NDVI
(image date closest to 01 September) for a given year. Bi-temporal
models consisted of two images that approximated annual maximum
and minimum NDVI (image dates closest to 01 September and 01 Feb-
ruary) for a given year. Multi-temporal models included the annual

http://ag.arizona.edu/azmet/index.html
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maximum NDVI from each year within the 28-year time-series and
hyper-temporal models included every image within the 28-year
time-series (n = 627). Although SVM models are highly resistant to
non-informative predictors (Kuhn and Johnson, 2013), two feature se-
lection procedures were employed sequentially for the multi- and
hyper-temporal models to identify and remove any redundant or non-
informative covariates. First, a pairwise correlation analysis algorithm
was used to identify and remove covariates with the highest degree of
multi-collinearity. The algorithm first calculates a correlation matrix of
all covariates; then sequentially evaluates all covariate pairs above a
correlation threshold; and finally retains the covariate from each pair
with the lowest average correlation with the remaining covariates. A
correlation threshold of 0.9 was chosen for this study. Following the ini-
tial covariate filtering, genetic algorithm (GA) feature selectionwas per-
formed on the reduced covariate dataset for both soil texture and coarse
fragment classes. GA feature selection performs multiple iterations of
covariate optimization, where each covariate is evaluated relative to
the dependent variable, and external 10-fold cross-validation per-
formed to prevent model overfitting (Kuhn and Johnson, 2013). Due
to the highly unbalanced class size distribution for the soil coarse frag-
ment classes, we applied class weights within our SVM coarse fragment
models to prevent the extreme over prediction of the 0–15% class.

4.6. Model validation

The splitting of observation data into separate training and test sets
is a standard approach used to evaluate model performance in many
DSM studies (e.g., Henderson et al., 2005; Rad et al., 2014). However,
this approach only represents model performance for one pair of testing
and training sets and can result in accuracy metrics with high variance
when sample sizes are low or when sample class sizes are highly imbal-
anced (Kuhn and Johnson, 2013). Consequently, we employed repeated
10-fold cross-validation (R10FCV) with 10 repetitions on our entire
dataset (n=103). R10FCVwasused to select optimal tuning parameters
and to evaluate model performance of our final model for texture class
and coarse fragment class. Average accuracy metrics were calculated
over the 10 repetitions of R10FCV. Model predictions and corresponding
observation from each of the 10 repeats of the R10FCV (n= 103 per re-
peat) were compiled and used to create a cross-validated error matrix
consisting of 1030 classification values per cross-validated model.

Model performance was assessed using the following metrics: per-
cent correctly classified (PCC), κ, producer's accuracy, and user's accura-
cy. PCC is the proportion of test observations that are correctly
classified; however, when the sample class distribution is highly unbal-
anced the PCC value may be inflated. For example, when a class has a
low rate of occurrence, high PCC could result from classifying all obser-
vations as the largest class (Congalton and Green, 2008). The κ accounts
for this bymeasuring the classification accuracy after accounting for the
probability of chance agreement (Congalton and Green, 2008) and is
calculated as:

κ ¼ O−E
1−E

ð2Þ

where O is the observed accuracy and E is the expected accuracy based
on the marginal total of the confusion matrix. κ values below 0.4
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represent poor agreement, values between 0.4 and 0.8 represent
moderate agreement, and values N 0.8 represent strong agreement.
The models with the highest κ from the tuning and covariate selection
steps were determined to be the most accurate. Model performance of
each individual class within the soil texture (e.g., clay, sandy loam)
and coarse fragment classes were assessed with producer's and user's
accuracy. Producer's accuracy is a measure of the proportion of sample
points correctly classified for a given class relative to the number of
observed points of that class, reflecting model accuracy in terms of
how well the landscape can be mapped. User's accuracy is a measure
of the proportion of sample points correctly classified for a given class
relative to the number of predicted points of that class, reflecting
model accuracy in terms of how reliable the classification map is to
the user. For the hyper-temporal model of soil texture classes, model
misclassification in terms of the proportion of observations of a given
class that were predicted as an adjacent class (producer's accuracy), is
presented using textural triangles. Results are presented using all 10
repeats of the R10FCV.
4.7. gSSURGO

Gridded Soil Survey Geographic (gSSURGO) soil maps with a map-
ping scale ranging from 1:20,000 to 1:63,360 were created based on
the dominant condition of soil texture and coarse fragment classes pub-
lished in gSSURGO (Soil Survey Staff, 2015). Dominant condition of soil
texture class and coarse fragment class was determined by aggregating
the classes of each named soil component in a given map unit and
representing the map unit with the dominant condition of the respec-
tive classes. gSSURGO was used as an external reference for visually
comparing and assessing the spatial arrangement of modeled classes
within the four different SVM models types (i.e., mono-, bi-, multi-,
and hyper-temporal).
Fig. 3. Distribution of soil texture class and coarse fragment
5. Results

5.1. Soil physical properties

Sampled soils represented awide range of textures from sandy loam
to clay (Fig. 3). The dominate soil texture class in the sampled surface
soils was sandy loam followed by clay and clay loam. Both silt loam
(n = 5) and sandy clay loam textures (n = 6) had the fewest number
of samples. More than half of the samples had 0–15% coarse fragments.
The number of samples in the 15–35% and N35% coarse fragment classes
were similar.

5.2. NDVI temporal variability and covariate selection

MeanNDVI for all 103 sample locations shows considerable variabil-
ity in seasonal amplitude across the time series (Fig. 4a). Variability in
NDVI seasonal amplitude corresponds to precipitation patterns both at
long and short time-scales. Several distinct climatic periods were iden-
tified during the study period (1984–2011) that represented dry, nor-
mal, and wet conditions (Fig. 4b). Delineating temporal patterns of
precipitation anomalies is dependent upon the time-scale at which
the SPI is calculated. We delineated climatic periods using coarse tem-
poral scales (i.e., 30–35 months), thus accounting for the long-term ef-
fects of antecedent soil moisture on vegetation condition. Although the
first three years of precipitation data (1984–1987) were missing from
our 28-year time series, four general climatic periods were delineated,
with a period of wet conditions (1987–1997), followed by dry condi-
tions (1997–2005), followed by normal conditions (2005–2009), and
then finally another period of dry conditions (2009–2011) (Fig. 4b). At
short time-scales (i.e., 1–6 months) distinct and sporadic precipitation
events result in highly dynamic fluctuations between abnormally wet
and dry conditions, as shown by the high number of fluctuations in
SPI along the time series at the shortest temporal scales (Fig. 4).
class for surface soil horizons at 103 sampled locations.
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At broad temporal scales, the cumulative effect of precipitation pat-
terns resulted in different generalized trends in NDVI within the identi-
fied climatic periods (Fig. 4a,b). For example, during the wet period
from 1987 to 1997, long-term mean NDVI was relatively steady at
~0.21, followed by a drop during the dry period (1997–2005) to
~0.18, and then short-term increases during the normal period. Howev-
er, at short time-scales the effects of variability in precipitation events
resulted in inter-annual variability in the amplitude of NDVI during
the different climatic periods (Fig. 4a). The standard deviation (SD) of
NDVI at all 103 sample locations across the time series shows a seasonal
pattern, with highest SD values occurring during periods of maximum
NDVI (i.e., annual peak biomass), and lowest SD values occurring during
periods of minimum NDVI (i.e., vegetative dormancy) (Fig. 4a).

Results from pairwise correlation analysis revealed that the multi-
temporal dataset (n=28) had 17NDVI images and the hyper-temporal
dataset (n = 627) had 556 NDVI images with significant
multicollinearity at the 0.9 threshold level. This resulted in initial re-
duced datasets with 11 and 71 NDVI images for the multi- and hyper-
temporal datasets, respectively. Subsequent GA feature selection for
soil texture class models revealed that 8 and 47 NDVI image dates
were significant covariates for the multi-temporal and hyper-temporal
datasets, respectively. For coarse fragment class models, GA feature se-
lection revealed that 6 and 37 NDVI image dates were significant covar-
iates for the multi-temporal and hyper-temporal datasets, respectively.

Significant covariates selected from the pairwise correlation and GA
analysis for the hyper-temporalmodelswere evaluated relative toNDVI
temporal variability and climatic variability identified from the SPI anal-
ysis (Fig. 4c, d). Evaluating the temporal sequence of significant covari-
ates for each hyper-temporal model within the context of short-term
precipitation effects (1–6 month SPI) and NDVI variability (NDVI SD)



Table 1
Error matrix for hyper-temporal model of soil texture classes.

Classa SVM error matrix

Reference

C CL L SCL SL SiL UA (%)

Prediction C 131 40 20 0 0 0 69
CL 39 126 33 10 0 0 61
L 9 4 3 7 8 10 7
SCL 0 0 0 0 0 0 0
SL 3 20 57 43 402 15 74
SiL 8 0 17 0 0 25 50
PA (%) 69 66 2 0 98 50 PCC = 67%

κ = 0.53

a C is clay, CL is clay loam, L is loam, SCL is sandy clay loam, SL is sandy loam, SiL is silt
loam, UA is user's accuracy, PA is producer's accuracy, PCC is percent correctly classified,
κ is kappa coefficient.
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revealed a distinct pattern where significant scenes within each model
occur after abrupt transitions between short-term climatic states
(Fig. 4c, d).

5.3. SVM model performance

SVM models for soil texture and coarse fragment classes showed
similar patterns of increasingmodel accuracy (i.e., PCC, κ) with increas-
ing temporal resolution. Significant variability inmodel performance for
mono- and bi-temporal approaches was seen within each set of 28
models for soil texture and coarse fragment classes, both in terms of
PCC and κ (Fig. 5). For both properties, hyper-temporalmodels had sub-
stantially higher PCC and κ values relative tomono-, bi-, andmulti-tem-
poral models (Fig. 5). Models for soil texture and coarse fragment
classes performed similarly in terms of percent correctly classified
(PCC), with accuracies ranging from 44 to 67% correct classification
(Fig. 5a, c). The κ values for texture classmodelswere in the ‘poor agree-
ment’ category for mono-temporal (κ range: 0.00–0.25) and bi-tempo-
ral (κ range: 0.00–0.32) models, but in the ‘moderate agreement’
category for the multi-temporal (κ = 0.43) and hyper-temporal (κ =
0.53) models (Fig. 5b). κ values for coarse fragment models were all in
the in the ‘poor agreement’ category, with very low κ values for
mono- and bi-temporal models (κ range: 0.00–0.23), and only slightly
higher κ values for multi-temporal (κ = 0.18) and hyper-temporal
(κ= 0.27) models (Fig. 5d). The frequency distribution of texture clas-
ses was unbalanced, with the coarsest texture (sandy loam) having the
highest number of observations, followed by the two finest texture
(
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temporal SVM models.
classes (clay and clay loam). Moderate texture classes (sandy clay
loamand silt loam)were underrepresented (Fig. 3), however, good rep-
resentation of the two textural extremes produced amoderately good κ
for thehyper-temporalmodel. In contrast, the coarse fragment class dis-
tribution was highly unbalanced, likely contributing to the low κ values
for all models (Fig. 5d, Table 2).

The most accurate mono- and bi-temporal models were selected to
facilitate further comparisons between the four model types. Error ma-
trices for the most accurate mono- and bi-temporal models, and the
multi- and hyper-temporal models are presented in Tables 1, 2 and
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Table 2
Error matrix for hyper-temporal model of coarse fragment classes.

Class SVM error matrix

Reference

0–14.9% 15–34.9% 35–59.9% UA%a

Predictions 0–14.9% 496 89 92 73
15–34.9% 112 72 37 33
35–59.9% 42 19 71 54
PA% 76 40 36 PCC = 62%

κ = 0.27

a UA is user's accuracy, PA is producer's accuracy, PCC is percent correctly classified, κ is
kappa coefficient.
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S2–S7. In general, producer's and user's accuracies for individual soil
texture classeswere similar, indicating themodels' ability to both detect
and predict sample classeswith a similar level of accuracy. An exception
to this trend is seen with the dominant soil texture class (SL), where
user's accuracy decreased relative to producer's accuracies in models
with decreasing temporal resolution (i.e., user's accuracy: mono- b bi-
bmulti- b hyper-temporal for SL) (Tables 1, S5–S7). This reflects the in-
creasing over prediction of the dominant class inmodelswith fewer sig-
nificant NDVI covariates, reflecting models that are increasingly less
robust. The soil texture classes with the lowest number of observations
(i.e., SCL and L) had the lowest accuracies, while the soil texture class
with the highest number of observations (i.e., SL) had the highest
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Fig. 6. Classification accuracy plots for individual textural classes illu
accuracy.Model results for coarse fragment classes also showed similar-
ities between producer's and user's accuracy, and in general, lower
accuracies for under-sampled classes (i.e., 15–34.9%, 35–59.9%)
(Tables 2, S5–S7). Model misclassification for hyper-temporal models
represented by producer's accuracies and the number of misclassified
predictions occurring in each adjacent class is shown in Table 1 and
Fig. 6 for soil texture classes and Table 2 for coarse fragment classes.

5.4. Spatial predictions

Soil texture class predictions from SVMmodels showed varying de-
grees of association with parent materials and geomorphology in the
study area, but the hyper-temporal model was the most effective in de-
lineating patterns of textural classes that align with expected patterns
from expert knowledge (Fig. 7). All four RS models indicate the wide-
spread distribution of sandy loam textures, but the mono- and bi-tem-
poral models (highest performing models for each type) predicted
more sandy loam in the western portion of the study area than multi-
or hyper-temporal models. Error matrices for mono- and bi-temporal
models (Tables S2, S3) reveal the over prediction of the sandy loam
class as reflected in the low user's accuracy relative to producer's accu-
racy. Additionally, the mono- and bi-temporal models were unable to
predict all underrepresented classes, with only three classes predicted
with the mono-temporal model and four classes predicted with the
bi-temporal model. In contrast, multi- and hyper-temporal models pre-
dicted all six texture classes, demonstrating an increased ability to
17
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model under sampled classeswhen the temporal frequency of covariate
data increases. The hyper-temporal model, and to a lesser extent the
multi-temporal model, predicted high clay content in soils of the west-
ern portion of the study area reflecting basalt and rhyolite parent mate-
rial in contrast to the sandy alluvial deposits derived from granitic
parent material in the eastern portion. Similarly, the hyper-temporal
model predicted high silt content in bottomlands of the central portion
of the study area which display patterns of the Miocene age lakebed
sediments and the accumulation of fine materials in the lowest part of
the landscape.

Similar to models of soil texture class, noticeable differences in
coarse fragment class predictions can be seen across the four RSmodels
(Fig. 8). Coarse fragment predictions from the mono-temporal model
delineated many of the smaller drainages in the granitic alluvial fan in
the eastern portion of the study area, but failed to predict the 35–
59.9% class. These drainages features are also visible in the bi-temporal
model; however, the discontiguous prediction of the 35–59.9% class
produced a ‘salt-and-pepper’ effect that masks many of the prominent
landscape features. In contrast, the multi- and hyper-temporal models
illustrated clear patterns of soil-landscape features and parent material
differences. For example, the hyper-temporal model was effective in
predicting the higher coarse fragment content in the volcanic parent
materials located in the western half of the study area, whereas other
models failed to predict these patterns.

Maps of gSSURGO texture and coarse fragment class, aggregated
by dominant condition, were included to provide an external con-
textual reference for interpreting generalized spatial patterns of
soil property classes. In general, a strong correspondence can be
seen between the generalized gSSURGO maps and SVM model
predictions.
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6. Discussion

6.1. Soil-climate-vegetation relationships

In natural ecosystems, vegetation coexists with soil as part of a feed-
back system,where vegetation influences soil development, and in turn,
the distribution of plant communities is influenced by soil physical and
chemical properties (Ballabio et al., 2012). Within a landscape, the spa-
tial distribution of soils and topography can create unique soil-climatic
environments where only plant communities adapted to those condi-
tions (i.e., ecological niche) can survive. This soil-vegetation feedback
system results in predictable relationships between plant species com-
position and the soil properties that control its spatial distribution for
a given climate. We have demonstrated that NDVI temporal response
functions, extracted at each pixel location across the study area, were
able to serve as a spectral ‘fingerprint’ of the soil with respect to soil
texture and coarse fragment classes.

The controlling influence of soil properties on the distribution
and dynamics of vegetation in semiarid landscapes has been well
documented (Levi et al., 2015; McAuliffe, 1994; Medeiros and
Drezner, 2012; Michaud et al., 2013; Monger and Bestelmeyer, 2006;
Parker, 2014). These relationships are largely controlled by available
soil moisture and, to a lesser extent, chemical soil properties such as nu-
trient availability and pH. The ability to predict many soil properties is
dependent upon identifying periods of variability in NDVI spectra that
correspond to variation in the soil property of interest. Previous studies
have shown that antecedent soil moisture can have a pronounce effect
on net primary production (Reichmann et al., 2013; Sala et al., 2012)
and the resulting spectral response of vegetation. For example, Levi
et al. (2015) found that high antecedent moisture prior to monsoon
rainfall in the Sonoran desert resulted in a reduced spectral response
of vegetation during monsoon rainfall, particularly in years with dry
monsoon conditions. Similar patterns were observed in this study,
where transitions from dry to wet conditions, as identified from short-
term SPI, show amplified NDVI spectral response. These periods are
also characterized by high variability in NDVI. For example, many of
the significant image dates within our texture class SVM occurred dur-
ing transitions between periods of extreme drought and abnormal
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wetness (e.g., September–November 2006), which are associated with
concomitant peaks inNDVI andNDVI spectral variability (Fig. 4). Our re-
sults show, however, that spectral variability resulting from transitions
in climate are not restricted to dry-to-wet transitions, but rather occur
during transitions between all climatic states (i.e., wet-to-dry) (Fig. 4).
Variability in the amplitude of inter-annual NDVI and NDVI SD at peak
biomasswas related to variability in short-term SPIwhich characterized
transitions between climatic states. Furthermore, the effect of long-term
precipitation anomalies (i.e., SPI 20–36months) drives the frequency of
high variability transition events (Fig. 4). In general, periods along the
time series that characterize themost dramatic transitions between cli-
matic states corresponded to the significant scenes within our SVM
models.

6.2. Soil property predictions

Results from this study showed that increasing the temporal fre-
quency of RS imagery used in soil prediction models can greatly im-
prove the accuracy of model predictions (Fig. 5). Furthermore, this
study showed that these improvements were the result of a more re-
solved characterization of soil-vegetation dynamics and the temporal
variability that emerges from climatic feedbacks. As a result, soil predic-
tion models that utilize hyper-temporal RS may have a significant ad-
vantage over models using mono-, bi-, or multi-temporal RS imagery.
However, the improved ability of hyper-temporal RS to predict soil
properties, relative to traditional RS approaches, is dependent upon
howdirect of an influence the soil property has on vegetation dynamics.
Soil texture exerts a primary or direct control on vegetation spectra, and
thus produced a high PCC and κ for the hyper-temporal model. In con-
trast, coarse fragment content has a much weaker influence on vegeta-
tion spectra, and while it produced a comparable PCC, it had a much
lower κ value for the hyper-temporal model. In addition to the funda-
mental strength of the predictor-response relationship, several other
factors influence model predictions, including: (i), the frequency distri-
bution of sample classes, and (ii) the number of classes being predicted
and their degree of similarity with respect to model covariates.

The unbalanced frequency class distribution for texture and coarse
fragments is likely a result of both our sampling strategy and the spatial
distribution of sample classeswithin our study area. Approximately half
of our sample locations were selected using cLHS, a sampling method
that randomly stratifies sampling locations across feature space, thus
representing the multivariate distribution of input environmental co-
variates. The environmental covariates used in the cLHS were based
on a previous study that included both topographic and RS indices.
While the use of this sampling strategy likely captured much of the
spectral variability present in the hyper-temporal NDVI image time
series, a cLHS based directly on the hyper-temporal image stack may
have potentially improved the class distribution and overall model ac-
curacy. The remaining half of our samples were NRCS field transects,
where sampling locations were purposive and selected based on expert
knowledge. This type of sampling approach ismore likely to result in the
underrepresentation of uncommon sample classes. Thus in highly com-
plex and heterogeneous landscapes, if the initial sampling design fails to
adequately account for the spatial distribution of sample classes, the less
common sample classes will tend to be underrepresented as was the
case in this study.

The interpretation of model misclassification for categorical data
depends upon the types of relationships that exist between classes.
For example, coarse fragment classes exhibit a linear relationship
where each class increases in its percentage of coarse fragments, thus
any coarse fragment class is atmost directly related to only two adjacent
classes (i.e., greater than and/or less than specified range). In contrast,
soil textural classes are related in two dimensional space based upon a
specified range of sand, silt, and clay content. Consequently, many dif-
ferent textural classes can reside in close textural space to any one soil
texture class. This more complex relationship between texture classes
makes the interpretation of model misclassification more complicated.
By examining model misclassification results for texture classes using
textural triangles, we can visualize where the misclassified values fall
in textural space relative to their actual class (Fig. 6). For example, the
sandy clay loam class had a producer's accuracy of 0%, meaning that
no clay loam class observations were correctly classified. However,
upon further examination we see that all of the sandy clay loam obser-
vations were misclassified to similar, adjacent texture classes; with 72,
17, and 12% classified as sandy loam, clay loam, and loam, respectively
(Fig. 6). Sandy loam was the dominant texture class in the study area
and 98% of the sampleswere correctly classified. The disproportionately
large number of samples representing sandy loam likely explains
why many of the misclassified samples in neighboring texture classes
(i.e., loam, silt loam, sandy clay loam) were predicted as sandy loam.
The misclassification of soil texture classes to adjacent texture classes
is not surprising given the similar biophysical response these related
texture classes can exert on ecosystem structure and function.
6.3. Spatial patterns of soil texture and coarse fragment classes

While all RS models predicted similar generalized landscape pat-
terns, they differed strongly in their ability to predict all soil classes, as
well as to provide predictions that align with known spatial patterns
of parent materials and geomorphic features. For example, the western
portion of the study area is dominated by basalt hills and rhyolitic allu-
vial fans that produce fine textured soils. The mono-temporal model,
and to a lesser extent the bi-temporal model, predicted substantial
areas of sandy loam in this region. In contrast, the multi- and hyper-
temporal models predicted predominantly clay and clay loam textures
which alignwith our expectations. Additionally, the dominant influence
of maximum annual NDVI in both the mono- and bi-temporal models
resulted in spatial patterns of soil classes that highlight areas with
high vegetative cover. For example, the primary drainage in the center
of the study area has dense cover of S. wrightii along with other shrubs
and trees; and the smaller drainages dissecting the granitic alluvial fan
in the eastern portion of the study area characterized by dense stands
of Prosopis spp. These patterns are less prominent in the multi- and
hyper-temporalmodels because they representedmore of the inter-an-
nual variability of vegetation patterns. Spatial predictions of soil texture
from the hyper-temporal model corresponded well with generalized
texture patterns from gSSURGO, with the exception of sections of the
western portion of the study area where gSSURGO fails to accurately
represent the clay texture class. Additionally, we should note that the
mono-temporal and bi-temporal model predictions presented in
Figs. 7 and 8 represent best-case scenarios, that is, they represent the
strongest of the 28 models of each model type. In many cases both the
mono- and bi-temporal models had no predictive ability, assigning all
observations to the dominant class. Consequently, when utilizing a
mono- or bi-temporal model, the chance of obtaining a meaningful
outcome is highly variable.

Spatial predictions of soil coarse fragment classes showed that as the
temporal frequency of model covariates increased, there was an in-
creased ability to differentiate the geomorphic features and parent ma-
terials that control the distribution of coarse fragments across the study
area. Similar to soil texture class predictions, themono-temporal model
of coarse fragments represents peak vegetationwhichmay explainwhy
the patterns of the primary drainage were so discrete compared to the
upland landscapes with less vegetative cover. Poor representation of
spatial patterns in the bi-temporal model likely reflect the contrasting
vegetative patterns during wet and dry conditions, as this model was
developed with peak and non-peak NDVI. Improved spatial predictions
of coarse fragment classes can be seen in themulti- and hyper-temporal
models, with the hyper-temporalmodel producing spatial patterns that
correspond most closely to expected distributions. Additionally, spatial
predictions from the hyper-temporal model were the most similar to
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that of gSSURGO and highlight the majority of the landscape patterns
discernable in gSSURGO.

6.4. Future applications of hyper-temporal remote sensing for soil mapping

In this study we demonstrate the ability of hyper-temporal RS to
characterize the soil-vegetation relationship and its response to climatic
variability in arid and semi-arid ecosystems; and the utility of using the
spectral response resulting from these soil-vegetation dynamics for
predicting soil properties. While few studies have developed soil
proxies from vegetation cover, one approach has been to associate soil
properties with plant functional types (PFT), which represent broad
groupings of vegetation based on similarities in morphological and
physiological traits constrained by environmental resources and condi-
tions (Ustin and Gamon, 2010). Prior efforts to map PFT using remote
sensing have employed a static or mono-temporal approach (Buis
et al., 2009; Schaepman et al., 2007; Ustin and Gamon, 2010), and
while these efforts are useful in characterizing soil-vegetation spatial
variation (Ballabio et al., 2012), growing evidence supports the notion
that temporal variability in vegetation spectra, as driven by soil and cli-
mate feedbacks, is an important predictor of soil variability. Since envi-
ronmental resources and conditions change in response to internal and
external drivers, the morphological and physiological traits expressed
by PFTs will also change. Our approach builds upon the concept of
PFT, but further extends this concept to include temporal variability in
vegetation spectra relating to internal and external drivers, thus
allowing the development of a spectral ‘fingerprint’ of the soil-vegeta-
tion relationship.

Although few studies have employed a hyper-temporal RS approach
for DSM, previous studies using a multi-temporal approach have dem-
onstrated the potential utility of characterizing soil-vegetation temporal
response for mapping a variety of soil properties (see Table S1). The ex-
tent to which RS temporal response functions can predict specific soil
properties or classes depends on the biophysical or biochemical rela-
tionships that exist between vegetation properties detectable via RS
and the soil property of interest. A wide variety of soil properties can
be linked to individual vegetation indices; however, more complete
temporal response functions appear to be more robust for modeling
soil properties that either exert a direct control on vegetation patterns
or those properties that are directly influenced by vegetation dynamics.
This is in contrast to those soil properties that are indirectly tied to the
spectral response of vegetation through time and space.

Although not examined in this study, terrain attributes are some of
the most commonly used covariates for predicting soil properties
(Grunwald, 2009; McBratney et al., 2003). Terrain attributes and spec-
tral indices often exhibit considerable cross correlation due to the strong
interrelationships between factors in the soil environment. Nonethe-
less, previous studies have shown that the combination of both terrain
and RS data produces the most accurate classifications of soils in com-
plex geomorphic landscapes (Dobos et al., 2000; Ehsani and Quiel,
2009; Martin and Franklin, 2005; Taramelli and Melelli, 2009), indicat-
ing that terrain and spectral indices each possess some unique amount
of explanatory power. Future research is needed to examine the added
benefit of incorporating both hyper-temporal RS and terrain attributes
into soil prediction models.

7. Conclusion

In this study we have reviewed and synthesized, through the lens of
temporal variability, previous research utilizing RS imagery for DSM.
Results from this review showed that the majority of DSM studies that
use RS have employed a mono-temporal RS methodology, and that
these mono-temporal RS covariates have been important predictors in
DSMmodels. However, growing evidence supports the notion that tem-
poral variability in vegetation spectra, as driven by soil and climate feed-
backs, is an important predictor of soil variability. This recognition,
combinedwith the removal of prior constraints (e.g., imagery cost, com-
putational efficiency) on using high frequency RS time series in DSM,
has led to the increasing use of multi- and hyper-temporal RS in DSM
in recent years.

In this study,we demonstrated the efficacy of the hyper-temporal RS
approach in predicting soil texture and coarse fragment classes in a
semiarid region of the southwestern United States. We highlight how
hyper-temporal RS can improve currentmethods of soilmapping efforts
due to its ability to characterize both intra- and inter-annual variability
at a high temporal resolution, allowing the detection of subtle changes
in RS spectra relating to variation in soil properties. The hyper-temporal
models outperformed the mono-, bi-, and multi-temporal models that
represented more traditional approaches for incorporating RS data in
DSM models. Furthermore, this study showed that in the majority of
cases, mono- and bi-temporal models produced spurious results due
to suboptimal timing of image selection. In these arid ecosystems,
hyper-temporal RS was highly effective in modeling soil texture due
its direct control on vegetation spectral variability in response to climat-
ic variability. Coarse fragment class was also effectively modeled, al-
though with a weaker model relative to soil texture. Our results show
that short-termprecipitation patterns (i.e., short-termSPI)were driving
variability in the amplitude of inter-annual NDVI and resulting SD of
NDVI at peak biomass. Furthermore, our analysis showed that long-
term precipitation anomalies (long-term drought, long-term wetness)
drive the frequency of these high variability transition events. In gener-
al, the periods along the time series that characterize themost dramatic
transitions between climatic states correspond to the significant scenes
within our SVM models. Consequently, the optimal time-series for
modeling soil properties is not dependent upon its length, but rather
that it encompasses a time period that includes a range of climatic ex-
tremes which results in maximized spectral variability. The hyper-tem-
poral RS approach can improve current DSM efforts for a range of soil
properties and classes; however, additional research is needed to test
the efficacy of the hyper-temporal approach for other soil properties
and in other ecosystems and environments.
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