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Local and regional soil data can be improved by coupling new digital soil mapping techniques with high
resolution remote sensing products to quantify both spatial and absolute variation of soil properties. The
objective of this research was to advance data-driven digital soil mapping techniques for the prediction of soil
physical properties at high spatial resolution using auxiliary data in a semiarid ecosystem in southeastern
Arizona, USA. An iterative principal component analysis (iPCA) data reduction routine of reflectance and
elevation covariate layers was combined with a conditioned Latin Hypercube field sample design to effectively
capture the variability of soil properties across the 6250 ha study area. We sampled 52 field sites by genetic
horizon to a 30 cm depth and determined particle size distribution, percent coarse fragments, Munsell color,
and loss on ignition. Comparison of prediction models of surface soil horizons using ordinary kriging and
regression kriging indicated that ordinary kriging had greater predictive power; however, regression kriging
using principal components of covariate datamore effectively captured the spatial patterns of soil property–land-
scape relationships. Percent silt and soil redness rating had the smallest normalized mean square error and the
largest correlation between observed and predicted values, whereas soil coarse fragmentswere themost difficult
to predict. This research demonstrates the efficacy of coupling data reduction, sample design, and geostatistical
techniques for effective spatial prediction of soil physical properties in a semiarid ecosystem. The approach ap-
plied here is flexible and data-driven, allows incorporation of wide variety of numerically continuous covariates,
and provides accurate quantitative prediction of individual soil properties for improved land management deci-
sions and ecosystem and hydrologic models.

Published by Elsevier B.V.
1. Introduction

Information on the spatial variability of soil properties is required for
input to soil erosion models (Chen et al., 2011), hydrology models
(Miller and White, 1998; Peschel et al., 2006), site-specific agricultural
management (Duffera et al., 2007), and digital soil risk assessments
that impact socioeconomic and environmental policy (Carre et al.,
2007). Coarse scale soil information masks spatial variability of soil
properties important for such landscape modeling at local and regional
scales (Lathrop et al., 1995; Singh et al., 2011). Themajority of available
soils information derives from soil survey efforts that commonly
provide little information regarding spatial variability within a soil
map unit or accuracy assessments of reported soil properties. This lack
of information can present problems for scaling and effectively incorpo-
rating soil data into landscape scale models (Wang andMelesse, 2006).
ampling design; iPCA, Iterative
taset; RK, Regression kriging.
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Here we develop a robust, data-driven approach for predicting soil
physical properties in a continuous raster data format. Specifically, we
couple iterative data reduction of covariate layers with model-based
sampling design and regression kriging to quantify soil physical
properties in a complex semiarid ecosystem.

One of the most important factors for predicting soil properties
across the landscape is the distribution of sampling locations. Tradition-
al statistical approaches do not consider spatial correlation of variables
or the relative position of sampling locations (Di et al., 1989). These
methods can be considered design-based models because they intro-
duce a stochastic element with the determination of sample locations,
whereas model-based designs attempt to describe the reality of soil
properties that are present as a result of the stochastic soil forming
components for a given area (Brus and deGruijter, 1997). While both
design- and model-based approaches can be used for predicting soil
properties (Brus and deGruijter, 1997), recent efforts have focused on
model-based sampling designs for implementing landscape-scale soil
prediction models (Minasny and McBratney, 2006). Although many
digital soil mapping studies utilize existing soil datasets for developing
soil prediction models (Hengl et al., 2007b; Maselli et al., 2008; Ziadat,
2005), estimating soils in an area without existing soil data requires
the selection of a sampling design.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.geoderma.2013.12.013&domain=pdf
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Developing a sampling design provides the opportunity to address
particular questions of interest and allows the incorporation of special
considerations that canmaximize the potential for accurately predicting
soil properties. In addition to the selection of sample locations in
geographic space (i.e., X and Y coordinates), a considerable amount
of attention has been focused on spreading sampling locations in the
feature space of available auxiliary data (Brungard and Boettinger,
2010; Hengl et al., 2003; Minasny and McBratney, 2006). An optimal
sampling design for an area where functional relationships between
soil properties and auxiliary information are not known should aim
to simultaneously represent geographical space and feature space of
available data (Hengl et al., 2003). One method of achieving this is
with a conditioned Latin Hypercube sampling design (cLHS) to create
sample locations that represent the variability of available covariate
data (Minasny and McBratney, 2006). Stratification of sample locations
in both feature space and geographic space can optimize deterministic
and stochastic prediction models by providing the necessary sampling
structure for each technique (Hengl et al., 2003;McBratney et al., 2000).

Interpolation methods such as ordinary kriging provide coarse
estimates of soil variability with limited gain in information relative to
vector based soil maps. Ordinary kriging is one of the most common
geostatistical approaches used in digital soil mapping and is often
used for comparison purposes against other spatial modeling methods
(Bishop and McBratney, 2001; Li and Heap, 2011; Scull et al., 2005).
Auxiliary information is often available for a given area and presents
the opportunity of using hybrid prediction models that combine non-
spatial prediction methods like regression with spatial methods such
as kriging (Hengl et al., 2004, 2007a; McBratney et al., 2000). The term
regression kriging was first coined by Odeh et al. (1994) and refers to
using regression to extract information from sampled locations using
covariate layers and then modeling the residuals with ordinary kriging.
Kriging of residuals canminimize problems associatedwith uncertainty
in the secondary information (Bishop et al., 2006).

There are multiple approaches to digital soil mapping that use a
wide variety of covariate data. For example, surface reflectance data
such as Landsat (Eldeiry and Garcia, 2010; Neild et al., 2007), SPOT
(Carre and Girard, 2002), IKONOS (Eldeiry and Garcia, 2008), and
MODIS (Hengl et al., 2007a) have all been used for soil prediction
models. Digital elevation models are also common data sources for
soil prediction and come in a variety of spatial resolutions (Hengl
et al., 2007b; McKenzie and Ryan, 1999; Ziadat, 2005). If global soil
mapping efforts are to be successful for projects like the GlobalSoilMap
project (Sanchez et al., 2009), a method of identifying important
auxiliary variables from the numerous available data sets is needed to
determine the best data for input to soil prediction models. Tesfa et al.
(2009) used correlation filtering in association with an importance
measure from random forests to determine explanatory variables
important for modeling soil depth. Another example is the optimum
index factor, which is based on the variance and correlation of different
reflectance band ratios (Chavez et al., 1982). In some cases, selection is
based on expert knowledge and the availability of data for a given area.
Though numerous methods have been employed to select important
layers of information from the plethora of available data, band selection
methods often produce different results (Beaudemin and Fung, 2001). A
standard approach to selecting input data to soil prediction models has
yet to be developed. Here we used an iterative principal component
analysis (PCA) data reduction process similar to Hengl et al. (2007b)
as a data-driven approach to determine important covariate layers.

The objectives of this study were to develop a data-driven soil
prediction model for estimating physical soil properties of surface
horizons in a semiarid ecosystem using a combination of surface reflec-
tance and digital elevationmodel (DEM) covariates.We integrated iPCA
for selecting covariate layers, a conditioned Latin Hypercube to design
the sampling plan, and a hybrid geostatistical approach for soil property
prediction. With this approach in mind, our hypotheses were 1) that
covariate layers selected with the iterative data reduction technique
would have a strong correlation with physical soil properties, 2) the
cLHS design would produce a statistically robust sampling scheme
to capture the spatial variability of soils in the study area, and 3) inte-
grating covariate layers with spatial statistics using regression kriging
would improve the prediction of soil properties on the landscape
relative to either regression or ordinary kriging alone.

2. Materials and methods

2.1. Study area

The study area represents a sub-region of a recently mapped soil
survey area (Graham County, AZ, Southwestern Part) of approximately
160,000 ha located 30 km north of the town of Wilcox in southeastern
Arizona (Fig. 1). This soil survey represents a Soil Survey Geographic
(SSURGO) data product that was mapped as a third order soil map
with a mapping scale ranging from 1:20,000 to 1:63,360. The larger
survey area includes a wide elevation gradient ranging from 910
to 1970 m asl with adjacent mountain ranges to the east and west
that have maximum elevations of 3267 and 2336 m, respectively, that
strongly influence local soil–landscape relationships. The current
study was focused on a smaller area of interest of approximately
6265 ha with an elevation gradient of 1273 to 1655 m asl (Fig. 1). This
area was selected because it represents the variability of landscape
positions, geology, surface reflectance, and soils found in the surround-
ing areas. Soils in the study area were mapped as Argiustolls in the
western third, Paleargids and Haplocambids in the eastern third,
Haplogypsids and Gypsitorrerts in the central third, and Torrifluvents,
Torriorthents, and riverwash in the drainageswith areas of rock outcrop
distributed throughout portions of the upland landscape positions (Soil
Survey Staff, 2011).

Sedimentary basin fill deposits, including dissected and inset alluvial
fans and fan terraces, cover the study area and range in age from
Holocene to early Miocene-aged (20 Ma) materials (Richard et al.,
2000; Wilson and Moore, 1958). Areas to the east consist of large,
gently sloping alluvial fans formed from material eroded from Middle
Proterozoic granitic rocks (1400–1450 Ma) and Early Proterozoic
rocks (1600–1800 Ma) that include granite schist, gneiss, sandstone,
andesite, and rhyolite, whereas basin fill deposits in thewestern portion
of the study area consist of material eroded from Middle Miocene
to Oligocene age volcanic rocks (20–30 Ma) that include andesite,
rhyolite, and basalt, and are expressed on the landscape as a large
alluvial fan composed predominantly of rhyolitic materials and an
area of hills formed on residual basalt. Pliocene to Middle Pleistocene
age lacustrine deposits that contain abundant carbonate and gypsum
deposits occupy the center of the survey area (Fig. 1) (Melton, 1965).
The major drainage network drains to the N–NW and stream channels
are actively cutting back into the lacustrine sediments.

The wide variation in elevation, landform, and soils supports
a diverse range of vegetation types across the study area. This area
occupies the transition zone between Sonoran and ChihuahuanDeserts,
which differ in their annual precipitation regimes and dominant
vegetation communities (Brown, 1994; Neilson, 1987). Semi-desert
grassland makes up the majority of the study area (Brown and Lowe,
1994) and includes a variety of grasses, forbs, shrubs, leaf succulents,
and cacti (Brown, 1994).

The climate is semiarid with mean annual precipitation that ranges
from 403 to 472 mm and has a bi-modal distribution with maximum
rainfall during the summer monsoon and winter months (PRISM
Climate Group, 2008). Mean annual air temperature ranges from 16 to
17 °C with average minimum temperature ranges from 9 to 10 °C and
the average maximum temperature ranges from 23 to 25 °C. The soil
temperature regime is thermic (15–22 °C), and soil moisture regimes
include aridic and ustic, with the transition between the two occurring
in the foothills of the neighboring mountain ranges (Soil Survey Staff,
2011, 2012).



Fig. 1. Location of the soil survey area in southeastern Arizona (A). Processing of auxiliary data was performed across the 160,000 ha survey area (B and C) and used for comparing soil
prediction models in the smaller area of interest (6265 ha) (D). Red boxes in (B) and (C) outline the smaller area of interest. Principal components of final covariate layers are shown
in the detailed study area and highlight the high relief, as seen in the hillshade of the digital elevation model (B) and the wide range of parent materials which can be distinguished in
the Landsat 7 ETM+ false color composite image (C). Black lines on the study area represent published soil survey delineations and black points represent the location of 52 sampling
locations used for soil prediction (D). Scale bar corresponds to the area of interest (D).
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2.2. Project design

This project used a data-driven approach to predict surface soil
properties with an underlying soil prediction model similar to the
scorpan concept proposed by McBratney et al. (2003). Indices
representing soil forming factors developed from both surface
reflectance data and high-resolution elevation data were combined
to provide a robust set of environmental covariates for soil predic-
tion. Integrating surface reflectance and elevation indices provides
a powerful set of predictors because it captures both existing
surface characteristics and soil forming factors. The first step in
this process was to develop an iterative data reduction technique
that utilized principal component analysis to distill the information
available in remotely-sensed reflectance and elevation covariates
(iPCA). A cLHS design was used to establish field sampling
locations that represented the variability in the feature space of
available covariate layers. Finally, two kriging routines were com-
pared to determine the most effective method of predicting soil
properties in these systems.

2.3. Data preprocessing

A DEM derived from interferometric synthetic aperture
radar (IFSAR) with 5 m spatial resolution was available for the
area surrounding the soil survey polygon and extended beyond ap-
proximately 95% of the watershed boundaries at the hydrologic
unit code (HUC) 12 level. Watershed extents not covered by the
IFSAR data were supplemented with National Elevation Datasets
(NED) with a 10 m spatial resolution. NED data were re-sampled
to a 5 m spatial extent and combined with the IFSAR data using
the Mosaic Wizard in ERDAS Imagine Software version 9.3 (Leica
Geosystems, 2008) and clipped to the extent of watershed bound-
aries. The resulting elevation dataset with watershed extent was
prepared for topographic modeling by filling sinks using ArcGIS
9.3 (Environmental Systems Research Institute, 2008). Total
curvature was computed with ArcGIS and subsequent analyses of
topographic parameters were performed using the SAGA Graphical
User Interface — Version 2.0.4 (Conrad, 2006). Terrain analysis was
performed with the parallel processing module using a multiple
flow direction algorithm (Freeman, 1991) to compute slope and
the SAGA wetness index (Boehner et al., 2002). Solar radiation
was calculated with the incoming solar radiation module for
one year on a 14 day time step using SAGA (Wilson and Gallant,
2000).

Two adjacent Landsat 7 ETM+ images collected September 12, 2000
were obtained from the USGS Global Visualization Viewer (path/row
35/37 and 35/38). Data were level 1G products with radiometric and
geometric corrections. Each scene was projected to NAD83 UTM Zone
12 North before processing. Scenes were combined using the Mosaic
Wizard in ERDAS Imagine Software version 9.3 (Leica Geosystems,
2008) and extracted at the extent of the survey area. Bands 1, 2, 3, 4,
5, and 7 were further processed with panchromatic sharpening using
a high pass filter resolution merge of Landsat band 8 to achieve a
14.25 m spatial resolution (Leica Geosystems, 2008) and subsequent
re-sampling to 5 m resolution to match the spatial resolution of the
elevation dataset. Resulting Landsat bands were atmospherically
corrected for simple Rayleigh scattering using the Second Simulation
of a Satellite Signal in the Solar System (6S) radiative transfer code
web interface (http://modis-sr.ltdri.org/code.html). This included
a correction for elevation and did not account for the atmospheric
profile or include aerosol information (Levi and Rasmussen, 2011).
Reflectance indices representative of soil, vegetation, and geology cap-
tured with Landsat band ratios 3/2, 7/3, 3/1, 5/4, 7/5, a calcareous sedi-
ment index (5 − 2)/(5 + 2), gypsic index (5 − 7)/(5 + 7), natric
index (5 − 4)/(5 + 4), and normalized difference vegetation index
(NDVI) (4 − 3) / (4 + 3) (Table 1).

http://modis-sr.ltdri.org/code.html)
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2.4. Data reduction

A data-driven approach was used to interpolate soil variables
derived from surface reflectance and topographic parameters (Hengl
et al., 2007b) (Table 1). Data reduction involved an iPCA to determine
those layers contributing most to observed soil–landscape variance
(Nauman, 2009). Prior to iPCA all covariate layers were standardized
using a z-score:

Zij ¼
xij � μ j

σ j
ð1Þ

where Zij is the z-score of pixel i in layer j, xij is untransformed value of
pixel i of layer j, μj is themean of layer j, and σj is the standard deviation
of layer j, prior to PCA. The standardized data were grouped into
elevation and reflectance indices and each group handled separately
for the initial step of the data reduction. The iPCA outputs (eigen matrix
and eigenvalues) were used to calculate loading factors (Rkp) of each
input band using the degree of correlation:

Rkp ¼
akp �

ffiffiffiffiffiffi
λp

q
ffiffiffiffiffiffiffiffi
Var

p
k

ð2Þ

where akp is the eigenvector for band k and component p, λp is pth
eigenvalue, and Vark is the variance of band k in the covariance matrix
(Jensen, 2005). The absolute value of loading factors for each covariate
layer were summed and ranked from greatest to lowest providing a
quantitative metric of the total contribution of each covariate layer to
the overall variance of the dataset. The number of principal components
required to reach 95% cumulative explained variance in the dataset
determined the number of covariate layers to retain for subsequent
iterations. The covariate layers retained were those with the greatest
absolute summed loading factors ensuring that the layers that explain
the most variance were retained. This was repeated until all principal
components were needed to achieve 95% of cumulative variance. After
processing topographic parameters and Landsat reflectance ratios
separately, the final layers from each group were merged and this
dataset reduced in the same manner. Covariate layers selected with
iPCA included Landsat ratio 3/2, the calcareous sediment index, solar
radiation, and the SAGA wetness index (Table 2). Reflectance indices
captured differences in parent material, and topographic parameters
represented relief and aspect controls on microclimate and vegetation
patterns; thus, four of the five soil forming factors from Jenny (1941)
were represented (Table 2). Final covariate layers from this iPCA were
used for field sample design and modeling of soil properties.

2.5. Sampling design

The goal of the sampling design for this study was to determine the
minimumnumber of sampling locations that could effectively represent
Table 1
Initial data layers used for iterative PCA data reduction in the study area in southeastern Arizo

Index Source Software Feature

3/2 Landsat ERDAS Imagine v. 9.2 Carbonate ra
7/3 Landsat ERDAS Imagine v. 9.2 Ferrous Fe
3/1 Landsat ERDAS Imagine v. 9.2 Fe oxide
5/4 Landsat ERDAS Imagine v. 9.2 Ferrous
7/5 Landsat ERDAS Imagine v. 9.2 Clay; hydrox
Calcareous sediment index Landsat ERDAS Imagine v. 9.2 Calcareous se
Gypsic index Landsat ERDAS Imagine v. 9.2 Gypsiferous
Natric index Landsat ERDAS Imagine v. 9.2 Natric soils
NDVI Landsat ERDAS Imagine v. 9.2 Vegetation
Curvature IFSAR ArcGIS v. 9.3 Water and se
SAGA wetness index IFSAR SAGA GIS v. 2.0.4 Water table
Solar radiation IFSAR SAGA GIS v. 2.0.4 Energy input
Slope percentage IFSAR SAGA GIS v. 2.0.4 Runoff and s
the variability of feature space for each covariate layer while also
distributing the locations across geographic space to represent all
soil features in the study area. Following Minasny and McBratney
(2006), a cLHS routine was used to identify sampling locations in the
field using publically available MATLAB code (http://www.iamg.org/
CGEditor/index.htm). A wide range of sample numbers (n = 25, 50,
100, 200, 500) were identified using the cLHS design to facilitate the
most efficient use of sampling locationsdue to cost and time constraints.
Box-and-Whisker plots of extracted covariate data from each sample
size were compared to the full covariate layers and the number of
sampling sites was determined by the lowest number of samples that
still captured the greatest variation in the original covariate layers
(mean, skewness, range, etc.). We found that 50 samples provided the
smallest set of sample locations that still accurately represented the
distributions of each of the original covariate layers. Due to some
inaccessible locations we substituted 2 locations of the original sample
with locations derived from an additional iteration of the cLHS design
and added 2 locations in underrepresented areas for a total of 52
sampled locations in the study area (Fig. 1). Additional samples were
not taken due to restrictions on the timing and the number of soil
samples to be sampled and analyzed.

The points sampled here had a sample density of 120 ha per point,
which was similar to or higher than several recent digital soil mapping
efforts (Gessler et al., 1995; Li, 2010; McKenzie and Ryan, 1999; Neild
et al., 2007). Webster and Oliver (1992) recommended at least
50–100 points for satisfactory variogram estimates and Hengl et al.
(2007a) strongly recommended the use of regression kriging if there
are more than 50 total observations and at least 10 observations per
predictor used in regression to prevent over-fitting of the model. With
52 sampled locations and 4 predictor variables used in the regression,
we fit the recommended constraints of variogram estimates and
regression kriging.

2.6. Field sampling and laboratory analysis

Soils were sampled by genetic soil horizon from 0 to 30 cm. Field
descriptions followed National Cooperative Soil Survey standards and
included horizon identification, texture, diagnostic horizons, surface
coarse fragments by volume determined by ocular methods, coarse
fragments of each horizon, parent material, dominant vegetation
cover, and landform (Schoeneberger et al., 2002). Coarse fragments
were estimated in three categories where gravels (GR) were 2–75 mm
in diameter, cobbles (CB) were 75–250 mm, and stones (ST) were
250–600 mm (Soil Survey Division Staff, 1993).

Sieved samples were prepared for particle size analysis with
pretreatments of sodium acetate (NaAOc — pH 5) to remove soluble
salts and sodium hypochlorite (NaOCl — pH 9.5) to remove organic
matter (Jackson, 2005). Samples were air dried and homogenized
by gently grinding with a metal spatula and a mortar and pestle.
Depending on the particle size, between 0.2 and 0.1 g of homogenized
na.

Reference

dicals Boettinger et al. (2008)
Boettinger et al. (2008)
Leica Geosystems (2008)
Leica Geosystems (2008)

ides Boettinger et al. (2008) and Leica Geosystems (2008)
diment; igneous rocks Boettinger et al. (2008)
soils Neild et al. (2007)

Neild et al. (2007)
Huete et al. (1985)

diment flux Moore et al. (1991)
depth; evapotranspiration Boehner et al. (2002) and Freeman (1991)
; available moisture Wilson and Gallant (2000)
oil loss; soil thickness Freeman (1991)

http://www.iamg.org/CGEditor/index.htm)
http://www.iamg.org/CGEditor/index.htm)


Table 2
Final data layers resulting from iterative PCA data reduction in the study area in southeastern Arizona.

Index Landscape feature or process Soil forming factor represented

Landsat 3/2 Carbonate radicals, red alluvial fans Parent material
Calcareous sediment index Mafic vs felsic parent material Parent material
Solar radiation Aspect, available moisture, vegetation Climate, organisms, relief
SAGA wetness index Landform, water/sediment flux Climate, organisms, relief
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soil was weighed into 15 ml auto-sampler tubes and dispersed first
with deionized water using an automatic rotator for 24 h and second
with 5 ml of 5% sodium hexametaphosphate ((NaPO3)6) and rotated
for an additional 24 h to ensure dispersion of soil particles. After
dispersion, the samples were processed using a Beckman Coulter LS
13 320 Laser Diffraction Particle Size Analyzer and USDA equivalent
sand, silt, and clay fractions obtained from the results. Loss on ignition
(LOI) was performed as a proxy for soil organic matter by heating
samples to 360 °C in a muffle furnace for a 2 h combustion (Konen
et al., 2002). Munsell soil color was determined on sieved soil using a
Minolta CR-200 handheld digital chromameter (Minolta Camera Co.,
Ltd., Osaka, Japan). Soil redness rating (RR) was determined as:

RR ¼ 10−Hueð Þ�Chroma
Value

ð3Þ

where Hue, Chroma, and Value are derived from Munsell soil color
(Torrent et al., 1983).

2.7. Soil prediction models

Soil prediction models of surface soil properties were developed
from the 52 sampled locations. Prediction model development was
performed with both ArcGIS 9.3 and the statistical programming
language R version 2.14.0 (R Development Core Team, 2011). A logit
transformation was performed using the ‘boot’ package in R (Canty
and Ripley, 2011) to approximate a normal distribution for the non-
normally distributed soil property data where (Hengl et al., 2004):

zþþ ¼ 1n
zþ

1−zþ

� �
;0 b zþb1 ð4Þ

and z++ is the logit transformed variable, z+ is the target variable
standardized to the 0 to 1 range:

zþ ¼ z−zmin

zmax−zmin
; zminb z b zmax ð5Þ

and zmin and zmax are the physical minimum and maximum values of z.
The physical values of each variable were within and not equal to the
minimum and maximum values to prevent ln(0) situations in the logit
transformation. Percent sand, silt, clay, LOI, and coarse fragments were
reported with values between 0 and 1. A value of 0.1 was added to all
fractions of coarse fragments prior to transformation to prevent ln(0)
situations of the sites with no coarse fragments, and a range of 0–15
was used for RR, as this reflects the possible range of values.

Shapefiles of point data attributed with measured soil variables
were imported to R using the ‘sp’ package (Bivand et al., 2008) in prep-
aration for regression and kriging. Ordinary kriging of both the logit-
transformed variables and the residuals resulting from stepwise linear
regression was performed using the ‘gstat’ package of R (Pebesma and
Wesseling, 1998). The ‘gstat’ package cannot automatically estimate
anisotropy parameters when modeling the variogram. Therefore, we
determined variogram anisotropy using ArcGIS and applied the infor-
mation to variogram modeling in R. Variogram models that minimized
the root mean square error (RMSE) and had a standardized RMSE
closest to 1.0 from cross validation in ArcGIS were selected to provide
inputs to variogram modeling in R.
Modeling of soil properties was performed with regression kriging
using the selected covariate layers. Regression kriging results were
both visually and quantitatively compared to ordinary kriging, as it is
oneof themost commongeostatistical approaches used in environmen-
tal landscape studies (Li and Heap, 2011). Regression kriging models
were developed using principal components of the final covariate
layers used in the sampling design (RK). Regression kriging was used
instead of cokriging to avoid the complexity of making predictions
beyond bivariate predictions. Further, the use of principal components
reduces potential error introduced throughmulti-collinearity of predictor
variables (Hengl et al., 2003).

Initial evaluation of soil prediction models using regression kriging
of principal components of the final four covariate layers indicated
that strong aspect differences were introduced by the solar radiation
information and estimated differences in soil properties that were high-
ly unlikely. For example, predicted values of clay and sand percentage
on north- and south-facing slopes on hills of the same parent material
were 10–20% different for soils that were less than 100 m away. Based
on these spurious predictions, solar radiation was removed from the
set of covariate layers and a PCA of the remaining three covariates
were used as predictors, i.e., Landsat band 3/2, calcareous sediment
index, SAGA wetness index. Relationships between soil properties and
the three remaining covariateswere extracted using backward stepwise
linear regression as the first step in regression kriging using the ‘MASS’
package in R (Venables and Ripley, 2002). Model selection was deter-
mined by minimizing the Akaike Information Criterion (AIC) (Akaike,
1974). Principal components of covariate layers were the linearly
uncorrelated variables used to predict soil properties. Prior to applying
the regression equations to the raster data, areas representing cattle
ponds were masked out using ArcGIS to remove pixels representing
surface water.

Regression model residuals were interpolated using ordinary
kriging. Residual variogram development was performed as above,
using a combination of ArcGIS to determine variogram anisotropy and
the ‘gstat’ package in R to perform ordinary kriging of the residuals.
Kriged residuals were added to regression model results for final
prediction maps.

2.8. Model validation

Model validation was performed with leave-one-out cross
validation and comparison of the predicted values at interpolation
points (Pebesma and Wesseling, 1998). Normalizing measures of
model performance is also useful for comparing relative prediction
error for transformed variables for which the variance cannot simply
be back-transformed (Hengl et al., 2004); thus, logit transformed
variables were used for the cross validation to determine normalized
mean square error (NMSE)

NMSE ¼

1
n

Xn
i¼1

pi−oið Þ2

s2
ð6Þ

where n is the number of observations, pi is the predicted value at
location i, oi is the observed value at location i, and s2 is the variance of
the observed samples (Li and Heap, 2011). A Pearson rank correlation



Table 3
Pearson correlation coefficients of measured soil properties of surface soils at 52 locations and candidate auxiliary data layers applied to iterative PCA data reduction. Shaded rows
correspond to auxiliary data layers selected with the iterative PCA data reduction. Values in bold are significant at the α = 0.05 level.

Sanda Silt Clay GR CB CF_total RR LOI Mean_abs

LS 3/1b 0.55 –0.33 –0.53 –0.14 –0.38 –0.43 0.81 –0.60 0.47

LS 3/2 0.46 –0.29 –0.44 –0.15 –0.27 –0.34 0.79 –0.51 0.41

LS 5/4 0.46 –0.17 –0.51 –0.17 –0.21 –0.30 0.41 –0.38 0.32

LS 7/3 0.56 –0.20 –0.62 –0.24 –0.41 –0.52 0.44 –0.53 0.44

LS 7/5 0.53 –0.30 –0.52 –0.12 –0.30 –0.33 0.45 –0.53 0.39

Calc_sed 0.50 –0.15 –0.56 –0.28 –0.41 –0.56 0.65 –0.48 0.45

Gypsic –0.54 0.32 0.52 0.10 0.28 0.31 –0.44 0.53 0.38

Natric 0.48 –0.20 –0.51 –0.15 –0.20 –0.28 0.41 –0.37 0.33

NDVI –0.26 0.23 0.22 –0.04 –0.04 –0.06 –0.26 0.22 0.17

Slope –0.21 –0.09 0.32 0.29 0.34 0.51 –0.37 0.37 0.31

WI 0.27 0.03 –0.37 –0.35 –0.39 –0.60 0.41 –0.38 0.35

Curv –0.02 –0.17 0.12 0.03 0.24 0.23 0.00 0.10 0.11

S_rad –0.07 0.15 0.01 –0.22 –0.16 –0.30 0.20 –0.16 0.16

aSand, Silt, Clay, GR, CB, and CF_total represent percent sand, silt, clay, gravel, cobble, and total coarse fragments; RR is redness rating derived fromMunsell soil color; LOI is loss on ignition;
Mean_abs is the mean of absolute values of correlations for each candidate auxiliary data layer.
bLS 3/1, LS 3/2, LS 5/4, LS 7/3, and LS 7/5 represent Landsat band ratios; Calc_sed is the calcareous sediment index; Gypsic is the gypsic index; Natric is the natric index; NDVI is the
normalized difference vegetation index; Slope is percent slope; WI is the SAGA wetness index; Curv is total curvature; and S_rad is solar radiation.
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coefficient was used to compare the observed and predicted values of
each variable at all 52 locations using the leave-one-out cross validation.

Patterns of predicted soil properties were compared to published
soil survey data as an additional validation of the soil predictionmodels.
Although the goal of this project was to provide detailed raster
predictions of soil properties across the landscape, we also wanted
to ensure that we captured the general patterns of soil variability
represented in the vector soil survey data. Mean values of sand, silt,
and clay were extracted from OK and RK predictions for each map
unit polygon and compared to the mean representative value for each
polygon reported in SSURGO (surface horizons) using a paired t-test.
The same representative values of surface soil properties from SSURGO
were presented for spatial comparisons of predictions.
3. Results

3.1. Relationships between soil properties and covariate data

Candidate covariate layers applied to the iPCA data reduction
showed varying degrees of correlation with the eight measured soil
properties (Table 3). Of the 13 candidate covariates, 11were significant-
ly correlated with CF_total, 10 with clay, CF_total, and RR, and 8
with sand. In general, Landsat indices had stronger correlations with
measured properties than topographic parameters. Summing across
all measured variables, the strongest correlations were found for
Landsat 3/1 and the calcareous sediment index and weakest correla-
tions were found for curvature and solar radiation. Covariate layers
selected with the iPCA demonstrated significant correlation with mea-
sured physical soil properties (Table 4). Both Landsat ratio 3/2 and the
calcareous sediment index were significantly correlated with seven
of the eight measured soil properties. The SAGA wetness index was
significantly correlated with six of the eight properties while solar
radiation only showed significant correlation with one soil property.
Weak correlation of solar radiation to soil properties coupled with
the unrealistic predictions of soil properties resulting from the strong
aspect differences resulted in eliminating solar radiation as a predictor
variable. The strongest correlation between covariate layers and soil
properties was between Landsat ratio 3/2 and RR (r = 0.79). This was
followed by RR and the calcareous sediment index (0.65) and CF_total
and SAGA wetness index (0.60).

Soil properties showed significant correlations with one another,
as CB, clay, silt, RR, and LOI each shared significant correlations
with six of the other seven soil properties (Table 4). GR shared the
fewest number of significant correlations with other properties. Sand
and clay shared the strongest correlation of all measured properties
(r = −0.92) followed by a strong negative correlation between sand
and LOI (−0.73).

Covariate layers demonstrated moderate correlation, in particular,
between Landsat ratio 3/2 and the calcareous sediment index
(r = 0.71). A final PCA was performed on the three covariate layers,
Landsat ratio 3/2, calcareous sediment index, and SAGA wetness
index, to address problems associated with multi-collinearity of
predictor variables in regression model development, with resulting
low correlation coefficients between the principal components (Table 4).
3.2. Performance of coupled iPCA–cLHS design

The spatial patterns of landscape variability captured by the
iPCA data reduction demonstrated strong visual correspondence with
the published soil survey (Fig. 1 and Table 5) indicating the iPCA
captured soil–landscape variation as described in the mapping process.
Furthermore, the cLHS design based on iPCA output produced a spatial
sampling scheme that well represented the spatial variability of soil
survey map units (Fig. 1). The cLHS design stratified the sampling
locations randomly in feature space and the resulting spatial structure
is geographically dispersed, as determined by a nearest neighbor ratio
(observed mean distance/expected mean distance) of 1.19 for n = 52
points (p-value = 0.0072). Strong correspondence of the spatial
patterns of soil map units to cLHS selected sample locations indicated
the combination of iPCA and cLHS may serve as effective tools for
soil sample design for both soil survey and digital soil mapping. The
sampling design also captured a wide range of soil types, as reflected
in the variability in measured soil properties (Table 6). Sand and clay
had the widest range of values with ranges of N60%. Silt had the lowest
variability, as indicated by a low coefficient of variation, whereas coarse
fragments had high variability.

Unlabelled image


Table 4
Pearson correlation coefficients of measured soil properties of surface soils at 52 locations
and auxiliary data layers. Values in bold are significant at the α = 0.05 level. Shaded rows
and columns correspond to principal components of Landsat ratio 3/2, calcareous sediment
index, and SAGA wetness index.

GRa

-0.24 CB
0.57 0.66 CF_total

-0.06 0.37 0.25 Clay
-0.3 0.41 0.11 0.35 Silt
0.18 -0.5 -0.24 -0.9 -0.7 Sand

-0.05 -0.4 -0.36 -0.4 -0.4 0.52 RR
-0.09 0.62 0.45 0.63 0.58 -0.7 -0.6 LOI
-0.3 -0.4 -0.57 -0.5 -0.18 0.49 0.74 -0.54 PC1
-0.15 -0.04 -0.15 0.16 0.32 -0.26 -0.4 0.19 -0.2 PC2
0.13 0.17 0.24 0.22 -0.11 -0.12 0.08 0.0 -0.1 -0.1 PC3

-0.15 -0.3 -0.34 -0.4 -0.3 0.46 0.79 -0.51 0.87 -0.6 0.26
LS
3/2

-0.3 -0.4 -0.56 -0.6 -0.15 0.5 0.65 -0.48 0.92 -0.3 -0.5 0.71 Calc_sed
-0.22 -0.16 -0.3 0.01 0.15 -0.07 0.2 -0.16 0.37 0.03 -0.05 0.28 0.33 S_rad
-0.4 -0.4 -0.6 -0.4 0.03 0.27 0.41 -0.38 0.77 0.43 -0.03 0.46 0.61 0.36 WI

aGR, CB, and CF_total, Clay, Silt, and Sand represent percent gravel, cobble, total coarse
fragments, clay, silt, and sand; RR is redness rating derived from Munsell soil color; LOI
is loss on ignition; PC1, PC2, and PC3 are principal components of LS 3/2, Calc_sed, and WI;
LS3/2 is Landsat ratio of band 3 over band 2; Calc_sed is the calcareous sediment index;
S_rad is solar radiation; WI is the SAGA wetness index.
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3.3. Ordinary kriging

Modeled soil properties exhibited varying degrees of spatial
dependence (Table 7). Ordinary kriging of the logit transformed data
produced generalized predictions of soil properties with smooth transi-
tion of high to low values. For example, ordinary kriging of clay pro-
duced generalized predictions that captured major trends in the study
area, namely the high clay content of the basalt hills region in the west-
ern portion of the study area (Fig. 2). Predictions of sand with ordinary
kriging were highest in the granitic alluvial soils in the eastern portion
of the study area (Fig. 3). The ordinary kriging predictions of silt looked
very different from clay and sand (Fig. 4), as the anisotropy present in
the spatial structure of the logit-transformed silt variable produced a
complex pattern of high and low estimates of silt content that likely
did not reflect actual distributions of silt in the study area. This high
level of anisotropy was likely a result of poor spatial dependency of silt
in the study area and the lack of sufficient landscape-scale patterns of
silt content.

Spatial autocorrelation of clay modeled with ordinary kriging had
a range of 9.4 km compared to 11.7 km for sand and 5.9 km for silt.
Sand had a higher nugget than both clay and silt suggesting more
measurement error or micro-scale variation at spatial scales too fine
to detect in this study (Table 7). The distance of spatial dependence
for GR was 12.6 km and 9.8 km for CB, while the range of total coarse
fragments (CF_total) was an average of the two components at
Table 5
Comparison of sample distribution from the conditioned Latin Hypercube design to
stratification of published soil map units.

MUa Area (ha) # pts % area % pts

145 315 2 0.05 0.04
175 23 0 0.00 0.00
235 1656 15 0.26 0.29
255 492 5 0.08 0.10
260 160 1 0.03 0.02
275 30 1 0.00 0.02
280 2 0 0.00 0.00
300 942 9 0.15 0.17
320 1845 14 0.29 0.27
325 799 5 0.13 0.10
Sum 6265 52 1 1

a MU is soil map unit; # pts represents the number of sampled locations within each
map unit; % pts represents the percentage of sampled locations in each map unit.
10.4 km. The range of the spatial dependence for RR was 10.5 km for
ordinary kriging and 5.9 km for LOI. Relatively small nugget effects
were similar for the semivariograms of LOI suggesting most of the fine
scale spatial structure was captured with the distribution of sample
locations.

Expressing nugget semivariance as a fraction of the total
semivariance provides a way to classify the spatial dependence of soil
variables by identifying the proportion of short range variability that
cannot be described by the statistical model based on the variogram.
Cambardella et al. (1994) suggested the following classes of spatial
dependence: strong spatial dependence if the ratio was ≤0.25, moder-
ate for ratios between 0.25 and 0.75, and weak for ratios N0.75. Using
this classification, the logit-transformed variables of clay and sand
showedmoderate spatial dependence and silt had strong spatial depen-
dence (Table 7). GR, CB, CF_total, and LOI had moderate spatial depen-
dence and RR showed a strong spatial dependence.

Evaluation of the range of predicted values suggests that the ordi-
nary kriging approach did not capture the range of measured values,
as themeasured values of sand ranged from 1 to 75% and the prediction
map only estimated values up to 64%. Measured values of clay ranged
from 9 to 61% and the maximum predicted value from ordinary kriging
was 48%. Predicted values for silt were very similar to the measured
values. Though predictions from ordinary kriging provided adequate
information for generalized soil property maps, they lacked the detail
necessary for high-resolution hydrology and landscape modeling.

3.4. Regression

Multiple linear regression models indicated significant relationships
betweenmeasured soil properties and covariate layers although adjusted
R2 values did not show particularly strong predictability (Table 7). The
regression between the RK model and RR showed the best relationship
relative to all other regression models. GR and silt exhibited the weakest
relationships with covariate layers, whereas RR, LOI and total coarse
fragment content exhibited higher R2.

3.5. Regression kriging

Predictions of soil properties using RK represented landscape
features present on the landscape and captured detailed variation
in soil properties that aligned well with the soil survey map units
(Figs. 2, 3, and 4). The predictionmap of clay from the RKmodel provid-
ed detailed patterns of clay estimates that corresponded to landscape
features. High estimates of clay corresponded to the basalt hills in the
western portion of the study area, whereas low estimates were closely
related to soil map units representing granitic alluvial fans and drainage
networks in the eastern and central portions of the study area. The
RK model of sand also produced detailed estimates of sand content
that correspond with realistic patterns in the study area (Fig. 3). High
Table 6
Summary statistics for measured soil properties of surface soils at 52 locations.

Claya Silt Sand GR CB CF_total LOI RR

%

Min 8.90 13.00 1.00 0.00 0.00 0.00 0.01 0.20
Max 70.10 46.80 75.40 55.00 50.00 55.00 0.06 4.70
Median 16.20 26.10 58.10 5.00 0.00 12.50 0.02 1.40
Range 61.20 33.90 74.50 55.00 50.00 55.00 0.05 4.40
Std 16.40 9.00 21.30 12.70 13.60 16.40 0.01 1.10
Skewness 1.50 0.50 −0.90 1.70 1.80 0.50 1.00 1.00
Kurtosis 4.00 2.20 2.50 5.50 4.90 1.80 3.30 3.30
CV 0.71 0.33 0.43 1.19 1.79 0.89 0.61 0.64

a Clay, Sand, Silt, GR, CB, and CF_total represent percent sand, silt, clay, gravel, cobble,
and total coarse fragments, LOI is loss on ignition, and RR is redness rating derived from
Munsell soil color.



Table 7
Semivariogram model parameters of two kriging methods for logit-transformed surface
soil properties using 52 sample points.

Propertya Methodb Model Nugget psill range Nug:sill Adj. R2c p-Valued

Clay OK Sph 0.28 0.38 9368 0.42 – –

Sand OK Sph 0.74 0.87 11,671 0.46 – –

Silt OK Sph 0.04 0.16 5854 0.18 – –

GR OK Sph 2.26 2.06 12,592 0.52 – –

CB OK Sph 3.00 3.87 9768 0.44 – –

CF_total OK Sph 1.20 1.87 10,420 0.39 – –

RR OK Sph 0.08 0.49 10,474 0.14 – –

LOI OK Sph 0.20 0.11 5926 0.65 – –

Clay RK Sph 0.32 0.20 18,415 0.62 0.34 b0.001
Sand RK Sph 0.75 0.46 19,482 0.62 0.21 0.001
Silt RK Sph 0.09 0.13 9556 0.42 0.09 0.018
GR RK Sph 2.18 1.98 14,098 0.52 0.02 0.157
CB RK Sph 1.74 2.84 3852 0.38 0.24 b0.001
CF_total RK Sph 1.19 0.40 19,750 0.75 0.39 b0.001
RR RK Sph 0.09 0.17 11,445 0.36 0.51 b0.001
LOI RK Sph 0.20 0.13 16,332 0.61 0.37 b0.001

a Clay, Sand, Silt, GR, CB, and CF_total represent percent sand, silt, clay, gravel, cobble,
and total coarse fragments, LOI is loss on ignition, and RR is redness rating derived from
Munsell soil color.

b OK is ordinary kriging of logit-transformed variables and RK is for the residuals of
regression kriging with PCs as predictors.

c Adj. R2 is adjusted R2 values resulting from backward step-wise multiple linear
regression of surface soil properties modeled with RK.

d p-Value is from backward step-wise multiple linear regressions.
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estimates of sand were in the granitic alluvial fans on the eastern
portion of the study area and in the drainage networks throughout
the center of the study area. These predictions independently captured
Fig. 2. Prediction maps and relative prediction error of clay producedwith regression kriging us
represent soil map unit boundaries. Panel E represents the weighted average of clay content f
product.
differences in sand content that corresponded well with the soil map
units.

Variograms of sand and clay residuals from RK had a lower sill than
the original variables (Table 7) indicating a smaller variance in the
residuals, relative to the original variables. There was limited gain in
predictive power of regression kriging models over ordinary kriging
for GR indicated by the weak regression models and the similar
semivariograms for each model (Table 7). Though the spatial depen-
dence was moderate, the nugget effect was high (N2) suggesting
much of the spatial variability of GR was at scales too fine to detect.

The nugget:sill ratio indicated moderate spatial dependence for
regression residuals of clay, sand, and silt for RK. With the exception
of percent GR and CB, the nugget:sill ratio increased for variograms of
regression residuals, suggesting the regressions removed a considerable
portion of the spatial dependence from the original variables. Residuals
from the RK regression showed only a moderate spatial dependence
(Table 7).

Predicted values for RK effectively represented the ranges ofmeasured
values. Measured values of sand ranged from 1 to 75% and predictions
from RK ranged from 9 to 81%. Measured values of clay ranged from 9
to 61% and predicted values from RK ranged from 7 to 72%. Predicted
values for silt were also similar to the measured values for RK methods.
3.6. Goodness-of-fit

Goodness-of-fit from leave-one-out cross validation indicated
that OK had the highest correlation between predicted and observed
values for seven of the eight measured properties (Fig. 5). Only GR
was predicted better with the RK method. The mean R2 for the cross
ing principal components of covariate layers (A, B) and ordinary kriging (C, D). Black lines
or surface soil horizons in all map unit components derived from the USDA SSURGO data



Fig. 3. Predictionmaps and relative prediction error of sand producedwith regression kriging using principal components of covariate layers (A, B) and ordinary kriging (C, D). Black lines
represent soil map unit boundaries. Panel E represents the weighted average of sand content for surface soil horizons in all map unit components derived from the USDA SSURGO data
product.
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validationwas 0.50. The NMSE provided ametric to compare the bias of
model prediction for all methods. The lowest NMSE was achieved with
RK for seven of the eight properties (Fig. 5); higher correlation generally
corresponded to a lower NMSE.

The relative prediction error for each soil property–prediction
method combination reflects the proportion of variance in each
respective dataset. For clay estimates, the maximum relative prediction
error was smaller for RK than OK (Fig. 2). The lowest error for OKwas in
areas close to sampled locations, whereas error associated with the RK
prediction was more evenly distributed across the entire study area.
Prediction error showed a similar trend for sand (Fig. 3) with lower
error in the RK prediction relative to OK. The relative prediction error
for silt was more widely distributed from the OK model than for the
RK prediction (Fig. 4).

Predicted values of sand, silt, and clay were comparable to surface
texture data reported in SSURGO map unit polygons (Table 8). Results
from OK illustrated no significant differences between modeled values
of sand, silt, or clay and representative values reported in SSURGO.
RK predictions of sand and clay were not significantly different from
SSURGO data; however, mean predicted values of silt were significantly
different from values reported in SSURGO map units.

4. Discussion

4.1. Selected covariate data

Comparison of the candidate covariates for iPCA to measured soil
property values provided insight that was helpful for selecting covari-
ates. The four covariates selected with iPCA represented a subset
of the candidate layers that captured a range of soil–landscape features
in our study area. Although solar radiation was selected with the iPCA
data reduction, it showed very weak correlations with all measured
properties and we elected to remove solar radiation due to unrealistic
predictions of soil properties. A simple correlation of measured soil
properties with covariates could provide a means to sort the predict-
ability of properties of interest with regression; however, selection
of covariates would still have to be based on expert opinion or
some arbitrary threshold. One benefit of the iPCA approach is that
it provides a clear method of determining the number of covariates
to retain for prediction models. One interesting result of comparing
all covariates to the soil properties of interest is that RR and LOI
shared very similar correlations with the covariates which illustrates
the well-established relationships between soil color and soil organ-
ic matter content.

All measured soil properties had significant correlationswith at least
one of the covariate layers selected with the iPCA. Though the strongest
relationships were found between RR and auxiliary data, moderate
correlations between LOI, sand, silt, clay, and CF_total suggested the
iPCA technique performed well to identify important covariate layers
for digital soil mapping techniques. Similar to our findings, Csillag
et al. (1993) found that a stepwise PCA was useful for identifying
covariates for classifying the salinity status of soils from California and
Hungary. These data reduction methods may be more useful for digital
soil mapping applications than band selection methods for image
visualization such as the optimum index factor (Chavez et al., 1982)
or the Scheffield index (Sheffield, 1985) because the data reduction
methods can easily be applied to select more than the three bands
selected for red, green, and blue visualization.

image of Fig.�3


Fig. 4. Prediction maps and relative prediction error of silt produced with regression kriging using principal components of covariate layers (A, B) and ordinary kriging (C, D). Black lines
represent soil map unit boundaries. Panel E represents the weighted average of silt content for surface soil horizons in all map unit components derived from the USDA SSURGO data
product.
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More complex soil prediction models have been shown to increase
predictive power (Motaghian and Mohammadi, 2011); however,
obtaining adequate high-quality data to aid prediction is likely
more important than employing more complex prediction techniques
(Minasny and McBratney, 2007). The iPCA–cLHS approach optimized
sampling locations and maximized the likelihood of developing
successful soil predictionmodelswith aminimal number of observations.

4.2. cLHS design

The cLHS sampling scheme effectively captured the spatial variabili-
ty of soils in the study area and provided the foundation for prediction
of soil properties with both ordinary kriging and regression kriging
approaches. Sampling designs can optimize locations for different facets
of the geostatisical process including variogram estimation (Bogaert
and Russo, 1999) or kriging (van Groenigen, 2000) where kriging
requires evenly dispersed sample locations and variogram estimation
requires a range of short and long distances between points (Marchant
and Lark, 2007). This is because samples that are close in feature space
tend to be close geographically (Hengl et al., 2003). Although statistically
dispersed, the geographic distribution of sample locations includes awide
range of distances between points with a random distribution on the
landscape. Furthermore, the sample locations represented the equivalent
of a stratified random design with respect to the area of published soil
map units. The distribution of points in feature space, geographic space,
and proportionally across the soil map units indicate cLHS was an
effective sample design for prediction of soil attributes across the study
area.
4.3. Regression kriging vs. ordinary kriging and regression

RK produced estimates of soil properties that corresponded to the
landscape features and soil map units present in the study area and
had the lowest NMSE for seven out of eight modeled properties
and moderate correlations of observed and predicted values. Ordinary
kriging had higher NMSE; however, the adjusted R2 of observed and
predicted values was higher for seven of eight properties. Some studies
have found that regression kriging outperforms both non-spatial and
pure geostatistical methods (Odeh et al., 1994, 1995) while others
have found minimal improvement using a regression kriging approach
(Eldeiry and Garcia, 2010; Li, 2010). Prediction of soil properties using
non-spatial models other than regression have also been improved by
kriging residuals (Motaghian and Mohammadi, 2011; Scull et al.,
2005). Landscape patterns delineated with RK were similar to those
delineated by the published soil survey verifying that general soil
patterns were captured. Furthermore, RK provided detailed spatial
information of within map unit variability not currently captured in
available soil survey data.

OK likely had better predictions than RK because the spatial autocor-
relation of logit-transformed variables was greater than the correlation
between the variables and the covariates (Eldeiry and Garcia, 2010).
Performance of individual techniques is largely determined by the
local or regional relationships that exist between covariate layers and
soil properties, sample locations, and the choice of prediction method.
In our study, the regression of measured soil properties and PCs visually
separated landscape features; however, the regression models had
a relatively low R2. The combination of regression with kriging of
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Fig. 5. Comparison of goodness-of-fit of surface soil properties modeled with regression
kriging with PCs as predictors (RK) and ordinary kriging (OK) using Pearson correlation
and the NMSE. Clay, Sand, Silt, GR, CB, and CF_total represent percent sand, silt, clay,
gravel, cobble, and total coarse fragments, LOI is loss on ignition, and RR is redness rating
derived fromMunsell soil color. The dashed lines indicate themean values of NMSE and R2

for respective plots.
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residuals improved predictions relative to the regression alone by
accounting for spatial variability of regression model error.

5. Conclusion

Data reduction using an iPCA combined with a cLHS design
produced a sampling design that effectively captured the variability of
soil types as a function of the relative area of the published soil map.
This minimal dataset of 52 sample locations represented the variability
of both feature space and geographic space, and effectively predicted a
range of soil physical properties in this 6265 ha study area, demonstrat-
ing the efficacy of the coupled iPCA–cLHS–RK approach. The detailed
variation in soil properties captured with RK aligned well with soil
Table 8
Comparison of modeled surface sand, silt, and clay to representative values
from published SSURGO data. Values are p-values from paired t-tests between
SSURGO data and predictions from ordinary kriging (OK) and regression
kriging (RK) bymap unit. n = 27 for sand and silt and n = 28 for clay because
one SSURGO map unit polygon did not report values for sand or silt. Values in
bold are significant at the α = 0.05 level.

OK RK

Sand 0.38 0.33
Silt 0.12 0.02
Clay 0.40 0.96
survey map units, both spatially and in magnitude, and provided a
means to characterize the spatial variability of important soil properties
withinmapunits. Improvements in the predictionmodel could bemade
with additional field sampling to better define the spatial structure
of the data; however, the method presented here can optimize the
distribution of sample locations in similar circumstances when time
and financial resources are limited. The combination of iterative data
reductionwith a structured samplingdesign and a robust soil prediction
model can incorporate a wide variety of numerically continuous
covariates to improve soil sampling efforts. This approach can reduce
the time and money needed to provide detailed soil information and
associated errors to landscape models relevant to hydrology, agricul-
ture, geosciences, and atmospheric sciences.
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