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Modified Centroid for Estimating Sand,  
Silt, and Clay from Soil Texture Class

Pedology

Models that require inputs of soil texture are often limited by the availability 
of soil information. While texture class is easier to obtain than particle size, 
texture classes do not represent the continuum of soil size fractions. Soil tex-
ture class and clay percentage are collected as a standard practice for many 
land management agencies (e.g., NRCS, BLM, FAO) and clay content is fre-
quently estimated with acceptable accuracy (±5%). When clay and texture 
class is known, sand and silt can be constrained to a narrow range that may 
differ from the geometric centroid of a given texture class (gcent). I tested the 
concept of a modified centroid approach (mcent) using 75,736 soil samples 
from the National Cooperative Soil Survey pedon database that also had mea-
sured hydraulic soil properties. Comparisons were made using the Rosetta 
pedotransfer function (PTF) to test modeled values from gcent, mcent, and 
measured data in comparison with measured values of water content at field 
capacity (q330) and wilting point (q15000). The mcent approach produced a 
continuous distribution of values for sand and silt whereas gcent produced 
a stair-step pattern for each of the 12 texture classes. Rosetta underestimat-
ed water content. Error metrics were similar when all texture classes were 
combined, but differences between models emerged when individual texture 
classes were compared. Results support the practice of collecting field esti-
mates of clay percentage along with texture class to expand the use of soil 
profile data for both spatial and non-spatial modeling of soil processes that 
will advance our understanding of soil contributions to ecosystem function.

Abbreviations: AWC, available water holding capacity; DSM, digital soil mapping; gcent, 
geometric centroid approach for estimating sand, silt and clay fractions; H3m, modified 
H3 model; mcent, modified centroid approach for estimating sand, silt and clay fractions; 
PTF, pedotransfer function.

Field estimates of soil texture class are collected as a standard practice for 
natural resource assessments across the globe where some variation of the 
texture-by-feel method (Thien, 1979) is used to obtain soil texture class 

(FAO, 2006; Soil Survey Staff, 1993; Soil Survey Staff, 2012). Soil texture classes 
provide valuable information for many applications in soil science and other dis-
ciplines (e.g., soil survey, ecosystem models, land surface models, climate models); 
however, for many applications, values of sand, silt, and clay are preferable due to 
limitations of soil texture class information resulting from wide ranges of sand, silt, 
and clay within each class. Many agencies also collect estimates of sand or clay to 
better quantify soil texture properties. For example, soil texture class and percent-
age of clay is collected for all soil profile descriptions as part of the Bureau of Land 
Management Assessment, Inventory and Monitoring program (AIM) and the 
NRCS National Resources Inventory (Herrick et al., 2017) and is recommended 
by the FAO (FAO, 2006). The NRCS strongly encourages the estimation of both 
clay and sand for field descriptions (S. Wills and N. Starman, personal communica-
tion, 2017). These field estimates are very important for conducting soil surveys, 
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especially in parts of the world where soil inventories are limited. 
Estimates of sand, silt, or clay from readily collected field mea-
surement offer a practical solution for filling this much-needed 
knowledge gap and advancing efforts to parameterize process-
based models that require soil information.

There is a long history of using ternary diagrams to organize 
and visualize soil texture classes for land management (Whitney, 
1911). Sand, silt, and clay are the three elements comprising the 
triangle although definitions of these particles vary for different 
classification systems (Minasny and McBratney, 2001; Nemes et 
al., 1999). There have been efforts to convert from one system 
to another using particle-size distribution models (Minasny and 
McBratney, 2001; Shirazi et al., 2001; Wei et al., 2014); however, 
sand, silt, and clay are often the preferred variables for quantita-
tive representation of soil texture for modeling (Sanchez et al., 
2009; Schaap et al., 2004). For example, Gutmann and Small 
(2005) found that soil texture class (i.e., 12 USDA texture class-
es) only explained 5 to 15% of the variance in latent and sensible 
heat flux modeled with the Noah land surface model whereas us-
ing particle-size fractions explained up to 30% of the variance. 
Similar results from Gutmann and Small (2007) showed that 
particle-size fractions explained 20% of the variance in latent 
heat flux compared with only 5% explained with soil texture 
class for Noah models.

The accuracy of field-based estimates of soil texture is of-
ten similar to laboratory measurements which can significantly 
reduce costs associated with laboratory measurements. Vos et al. 
(2016) suggested that field-based estimates of soil texture may be 
able to replace laboratory analyses; however, they assigned sam-
ples to 37 predefined texture classes and compared the mean val-
ues of sand, silt, and clay from each class to measured values. Clay 
can be estimated with greater accuracy than sand or silt with ab-
solute differences between measured values and estimates often 
<5% (Post et al., 1986; Vos et al., 2016). Post et al. (1986) found 
strong correlations between measured and estimated values of 
sand, (r = 0.88), silt (r = 0.78), and clay (r = 0.86) for 25 Arizona 
soil samples by 36 soil scientists. Hodgson et al. (1976) reported 
75 and 85% of the variation in laboratory measured values of 
silt and clay, respectively, were captured with field estimates for 
184 soils in England. Interestingly, estimates of texture class have 
been less accurate with only 50% of 598 samples in Maryland 
being correctly assigned (Foss et al., 1975) and 46% for some 
Arizona soils (Post et al., 1986), which reflects the necessity for 
quantifying sand, silt, and clay. Experience is an important factor 
that contributes to the accuracy of hand estimates of soil texture, 
but accuracy and precision can be improved with practice and 
the help of quantitative assessments of performance (Franzmeier 
and Owens, 2008).

Soil particle-size distribution is influenced by several ce-
menting agents including organic matter, iron oxides, carbon-
ates, gypsum, silica, etc. ( Jackson, 2005). Field estimates gener-
ally do not have any pretreatments to remove these components, 
whereas, laboratory measurements often remove some or all of 
these. Consequently, relationships between field texture and 

particle-size distribution have been questioned (Marshall, 2003). 
Despite these potential limitations, reasonably accurate predic-
tions of soil texture properties can be obtained from field esti-
mates and the added information could greatly improve global 
soil inventories over simply reporting texture class.

One application of field-estimated soil texture is digital soil 
mapping (DSM). Digital soil mapping encompasses prediction 
models that use spatial modeling and environmental covariate 
data to predict a wide range of soil properties (McBratney et al., 
2003; Scull et al., 2003). Continuous soil properties are often 
the goal of DSM efforts (Sanchez et al., 2009), but available data 
may not reflect measured or estimated values of sand, silt, or 
clay. Legacy soil survey data is frequently used for DSM projects 
(Bishop et al., 2015; Chaney et al., 2016; Odgers et al., 2015). If 
soil texture class and estimates of clay are available, then realis-
tic estimates of sand and silt can be obtained which could sub-
sequently be utilized to develop continuous soil property maps 
instead of categorical soil texture class maps.

A second area of soil research that can benefit from quantita-
tive field estimates of sand, silt, and clay is the development and use 
of PTFs and more generally parameter estimation routines. This 
family of models is used to predict properties we need from prop-
erties that we either already have or properties that are relatively 
easy to measure (Vereecken et al., 2010; Wösten et al., 2001). Soil 
hydraulic parameters such as water retention and hydraulic con-
ductivity are commonly predicted using PTFs because they are 
difficult to measure (Schaap et al., 2001, 2004; Vereecken et al., 
2010), but PTFs are also important for predicting a range of other 
chemical and physical soil properties (McBratney et al., 2002) and 
filling gaps in soil databases (Sequeira et al., 2014). Pedotransfer 
functions are an important tool for modeling ecosystem process-
es influenced by land surface properties (Pachepsky et al., 2015; 
Vereecken et al., 2016). The availability of input parameters largely 
determines the type of PTF that can be applied. Common inputs 
for these models include soil texture class, sand, silt, clay, bulk den-
sity, and organic matter (Nemes et al., 2006a; Schaap et al., 2001; 
Vereecken et al., 2010).

The objective of this study was to evaluate the performance 
of a mcent for estimating sand and silt when soil texture class and 
percentage of clay are known compared with using sand, silt, and 
clay for the gcent of a texture class. More specifically I wanted 
to compare estimated values of sand, silt, and clay from the two 
centroid approaches to laboratory measured values by (i) fitting 
linear models and (ii) applying the data to the Rosetta PTF to 
compare measured water retention to modeled values. I hypoth-
esized that mcent would more closely approximate laboratory 
measured values of sand, silt, and clay compared with the gcent. 
Much like PTFs provide estimates of hard-to-measure hydrau-
lic soil properties from those easier to obtain, the intent of this 
study was to obtain sand and silt estimates from soil texture class 
and clay estimates that are much easier and more frequently col-
lected in the field.
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MATERIALS AND METHODS
Dataset

Laboratory data for 418,661 individual 
soil horizons representing over 21,000 pedons 
were obtained from the National Cooperative 
Soil Survey Characterization Database in 
the form of a Microsoft Access database 
(http://ncsslabdatamart.sc.egov.usda.gov/, accessed 
7 Jul. 2016). Many of the soil horizons had less-than-
complete characterization data because they were 
analyzed for a variety of different projects with differ-
ent goals. Soils were processed and analyzed accord-
ing to soil survey standards (Soil Survey Staff, 2014) 
and more information regarding the processing and 
use of these data can be found in Soil Survey Staff 
(2011). Reported gravimetric water content at 330 
and 15,000 cm measured on undisturbed clods and 
air-dry sieved samples, respectively, using pressure 
plates were converted to volumetric water content 
by multiplying gravimetric values by bulk density at 
330-cm pressure.

The data were subset to 75,736 soil samples 
that met minimum criteria for testing PTFs similar 
to other studies (Nemes et al., 2006a, 2006b; Schaap 
et al., 2004) (Fig. 1). Requirements for samples in-
cluded those with measured water content at 330 
(q330) and 15,000 cm (q15000) pressures, bulk den-
sity at oven-dry and at 330-cm pressure, and particle size. The 
data were further reduced by excluding duplicate information, 
all samples with master horizons of O, L, and R, samples where 
the sum of sand, silt, and clay didn’t add to 100, and samples with 
negative values of sand, silt, or clay. Samples that had particle-
size data that summed to 100 but lacked a named soil texture 
class were assigned a texture class using the soil texture package 
(Moeys, 2013) in R (R Core Team, 2016). Following recommen-
dations of Schaap et al. (2004), the following steps were taken to 
prevent unreasonable results: 1.) q15000 had to be less than q330; 
2.) q330 and q15000 were constrained to values between 0 and 
0.6 cm3 cm–3 under the assumption that the smallest available 
pressure head in the database was 60 cm; and 3.) oven-dry bulk 
density had to be between 0.5 to 2.0 g cm–3 to ensure low or ex-
tremely high values of bulk density would not mask differences 
resulting from inputs of particle-size separates.

Rosetta Model
A large number of PTF models are available to predict soil 

water retention (Vereecken et al., 2010; Wösten et al., 2001), but 
the Rosetta model is currently used to predict water retention 
curves for samples in the NCSS database due to its predictive 
reliability, compatibility with existing data and the widespread 
familiarity of users with Rosetta (S. Monteith, personal com-
munication, 2017). Rosetta provides a hierarchical suite of mod-
els to predict water retention parameters using a range of input 
data (Schaap et al., 2001). It combines neural networks with a 

bootstrap technique to obtain the probability distribution of 
hydraulic parameters (Schaap and Leij, 1998). Performance of 
the hierarchical models generally increases with added input 
data including soil texture class, sand, silt, clay, bulk density, and 
measured values of q330 and q15000 (Schaap et al., 2001, 2004); 
however, the goal of this study was to simulate conditions using 
commonly available field data. Therefore, I used the modified 
H3 model (H3m) described in Schaap et al. (2004) that requires 
percentage of sand, silt, clay, and oven-dry bulk density to pre-
dict water retention parameters for estimating q330 and q15000 
according to van Genuchten (1980):
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where q(h) is the volumetric water content (cm3cm–3) at pres-
sure head h (cm), qr and qs are residual and saturated water 
contents, respectively (cm3cm–3), a (>0, in cm–1) is related to 
air-entry pressure, and n (>1) is a measure of pore-size distribu-
tion (van Genuchten, 1980; van Genuchten and Nielsen, 1985). 
Available water holding capacity (AWC) was defined as the dif-
ference between q330 and q15000. Other Rosetta models were 
explored (H3, H2m), but the H3m model performed best with 
the selected dataset and was therefore selected for comparison of 
centroid methods described above.

Fig. 1. Soil particle-size distribution of 75,736 samples from NCSS soil database with 
USDA soil texture classes. Points are shown at 10% transparency to visualize the 
density of samples.
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Sand, Silt, and Clay Estimates
Values of sand, silt, and clay were generated in three different 

ways for input to Rosetta. Measured values from laboratory anal-
yses were used as a reference for two different approximations of 
sand, silt, and clay percentages. One approximation represented 
the geometric centroid of each of the 12 soil texture classes in the 
USDA soil textural triangle (gcent). A high-resolution version of 
the soil texture triangle with 1% increments of sand, silt, and clay 
was copied from the Keys to Soil Taxonomy as an image file and 
loaded into ArcMap (ESRI, 2015). All boundaries of soil texture 
classes were hand digitized to create a shapefile with 12 unique 
polygons. The shapefile was converted to a point feature class us-
ing the geometric center of each polygon and these points were 
plotted over the high-resolution image of the soil texture triangle 
to identify the percentage of sand, silt, and clay for each. These 
values represented 12 centroids within the soil texture triangle 
and were compiled into a lookup table that was merged with the 
original dataset (Fig. 2).

The second approximation of particle-size separates was a 
modification of gcent that utilized known soil texture class in-
formation and estimated clay percentage and is hereafter referred 
to as the modified centroid (mcent). A 1% grid of the soil tex-
ture triangle representing 5051 possible combinations of sand, 
silt, and clay was generated and passed through the soil texture 
package in R to assign soil texture class according to the USDA 
taxonomic system. This approach is similar to other studies that 
have simulated all possible realizations of soil texture for hydrau-
lic property predictions (Bormann, 2007, 2010; Twarakavi et 
al., 2009, 2010). The resulting sand, silt, clay, and texture class 

name were compiled as a lookup table that could be used to que-
ry sand and silt values when clay and texture class were known. 
For a given combination of clay percentage and texture class, the 
query returned all values of sand and silt and the median of each 
was calculated and assigned to the entered clay and texture class 
values. The query rounded clay estimates to whole numbers to 
match the format of the 1% grid which resulted in 250 unique 
centroid locations within the soil texture triangle (Fig. 2).

While the intent of this approach was to utilize field data 
that provide estimates of soil texture class and clay percentage, 
I used measured values of clay from laboratory analyses as the 
clay estimate to evaluate the performance of this approach. This 
effectively removes any bias in clay estimates from field data and 
assumes that field estimates are correct which allows for a sensi-
tivity analysis of the soil particle-size models.

Model Assessment
Three evaluation criteria were used to quantify errors in 

the Rosetta PTF estimates of water content relative to measured 
data. Mean error (ME) was used to determine the bias in predic-
tions according to
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where N is the sample size, q¢ is modeled water content, and q 
is measured water content. Similar to Schaap et al. (2004), I de-
composed the root mean square error (RMSE) into ME and an 
unbiased RMSE (URMSE) as
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The adjusted coefficient of determination (R2) 
of a linear model was used to provide a measure of 
fit between modeled and measured water content.

RESULTS AND DISCUSSION
Summary of Measured Data

The subset of data used in this study repre-
sented each of the 12 soil textures with sandy loam, 
silt loam, and loam textures accounting for approxi-
mately half of all samples (Table 1; Fig. 1). Soils 
with extremely high silt or clay were rare which is 
similar to other databases (Nemes et al., 1999). Bulk 
density values did not differ significantly by texture 
class. Differences in mean values of measured q330 
and q15000 summarized by soil texture class reflect-
ed the control of soil particle size on water reten-
tion, as expected, with clayey textures having larger 
water content (Table 1). Average AWC was greatest 
for silt and silt loam classes and smallest for sand. 
Distribution of samples in the database was similar 
to what Schaap et al. (2004) reported for an earlier 
version of the same database, which makes compari-
sons with their results valid. Mean and standard de-

Fig. 2. Comparison of 12 locations of the geometric centroid for each of the soil 
texture classes in the USDA taxonomic system (blue triangles) and 250 locations of the 
modified centroid approach representing texture class and clay percentage (red dots).
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viations of q330, q15000, and AWC provided in Table 1 can serve 
as a general look-up table for soil texture classes which may be 
useful resource for estimating these values as an alternative to 
other PTFs. This may be especially useful for soil with clay and 
silt textures, which are often underrepresented in soil databases.

Comparison of Sand, Silt and Clay Estimates for 
Centroid Approaches

Modeled sand and silt values were strongly related to mea-
sured values (R2 = 0.82–0.91) but showed very different pat-
terns (Fig. 3). The gcent method assigned one value of sand, silt, 
and clay for each of the 12 soil texture classes for a wide range 
of measured values in each respective separate, which resulted in 
a stair-step pattern. In contrast, the mcent approach produced 
a more continuous distribution of values for each of the sepa-
rates with a high R2 confirming the hypothesis that mcent would 
closely approximate measured values. There were noticeable gaps 
in the modeled values of sand between 69 and 77% sand and also 
86 to 90% that reflect the pattern of centroids within the soil 
texture triangle. Similarly, there was a large gap in modeled values 
of silt between 69 and 84% and >90% silt. Clay estimates from 
gcent displayed a stair-step pattern similar to sand and silt (not 
shown). Clay content is one of the most important variables for 
developing PTFs (Nemes et al., 2006b), but including sand and 
silt as input for PTFs commonly improves estimates compared 
with texture class alone (Schaap et al., 2001).

Comparison of Rosetta Output
Overall model performance between measured water con-

tents and modeled values from Rosetta was similar for each of the 
three soil texture models (measured sand, silt, and clay, mcent, and 
gcent; Table 2). ME_q15000 and URMSE_q15000 were consistent-
ly smaller than ME_q330 and URMSE_q330 while R2_q15000 was 
larger than R2_q330 for all models. Schaap et al. (2001, 2004) also 
reported lower error for q15000 compared with q330 for the original 

H3 and H3m models, respectively; however, the recent develop-
ment of Rosetta3 (Zhang and Schaap, 2017) shows the potential 
for correcting this systematic error by deriving optimal weights to 
improve model performance. Mean error was an order of mag-
nitude smaller for AWC relative to either of the measured water 
contents similar to Schaap et al. (2004), but had a much smaller R2 
than models of q15000 and q330. Negative ME for all models indi-
cated that the Rosetta model underestimated water retention val-
ues, which corroborates previous evaluations of the model (Schaap 
and Leij, 1998; Schaap et al., 2001, 2004).

Differences between model performance by texture class 
were more noticeable for q15000 than for q330 based on URMSE 
(Table 3) and R2 (Fig. 4). Models of q15000 generally had smaller 
ME for a given texture class when compared with q330. ME_q330 
and ME_q15000 were greatest for clay and silty clay textures and 
ME_q15000 was also large for silty clay loam textures. Differences 
in clay mineralogy can influence soil hydraulic properties 
(Williams et al., 1983), so it makes sense that clay-rich texture 
classes had more bias compared with other texture classes. Silt 
and sandy loam textures had the smallest bias for q15000 as indi-
cated by small ME. Interestingly, both ME_q330 and ME_q15000 
were slightly larger for measured values of sand, silt, and clay than 
for simulated values from gcent and mcent for some soil texture 
classes (Table 3). This may reflect variability in soil properties 
like organic matter (Hudson, 1994), or mineralogy (Williams 
et al., 1983) that affect water content but are not included in 
the Rosetta model. Another explanation could be that using 
texture class averages of sand, silt, and clay possibly reduced the 
effect of any overfitting Rosetta may have introduced in mod-
els of predicted hydraulic parameters from measured particle 
size data. Like ME, URMSE_q15000 was slightly smaller than 
URMSE_q330 for each soil texture class. Barring a few excep-
tions, URMSE_q15000 was <0.05 whereas URMSE_q330 was 
>0.05 for all texture classes in each of the three soil texture mod-
els (Table 3). URMSE_q15000 and URMSE_q330 for individual 

Table 1. Minimum and maximum values of measured sand, silt, and clay and oven dry bulk density and mean values of measured 
volumetric water content at 330- and 15000-cm pressures and available water holding capacity for 75,736 soil samples from 
NCSS soil database. Standard deviations of hydraulic properties are given in parentheses.†

Sand Silt Clay rb

Class N Min Max Min Max Min Max Min Max q330 q15 000 AWC

——––—–————— %———–—––———— —– g cm–3—– –—–—––———cm3 cm–3—–—–––—
Clay 8316 0.0 45.0 1.7 39.9 40.0 95.0 0.60 1.99 0.427 (0.063) 0.29 (0.051) 0.137 (0.054)

Clay loam 6870 20.1 45.0 15.1 52.9 27.0 39.9 0.51 1.99 0.348 (0.058) 0.205 (0.042) 0.143 (0.054)

Sandy clay 550 45.1 63.1 0.3 19.7 35.0 51.8 0.92 1.98 0.322 (0.064) 0.221 (0.041) 0.101 (0.053)

Sandy clay loam 3928 45.1 78.2 0.4 27.9 20.0 34.9 0.59 1.99 0.289 (0.061) 0.166 (0.04) 0.122 (0.051)

Sandy loam 13140 43.5 83.7 0.1 49.9 0.1 19.9 0.52 1.99 0.243 (0.085) 0.097 (0.043) 0.146 (0.071)

Silty clay 4642 0.0 19.6 40.0 59.6 40.0 59.4 0.51 1.99 0.402 (0.05) 0.268 (0.042) 0.134 (0.051)

Silty clay loam 8764 0.0 20.0 40.2 72.6 27.0 40.0 0.54 1.99 0.365 (0.047) 0.21 (0.038) 0.155 (0.05)

Silt loam 13126 0.3 48.1 50.0 87.4 0.1 27.2 0.52 1.99 0.339 (0.063) 0.133 (0.043) 0.206 (0.063)

Silt 337 0.0 18.3 80.0 95.5 0.1 11.9 0.55 1.89 0.364 (0.076) 0.087 (0.039) 0.277 (0.082)

Loam 10922 23.3 52.2 28.0 49.9 7.0 27.4 0.51 1.99 0.302 (0.066) 0.14 (0.044) 0.161 (0.059)

Loamy sand 3439 70.4 89.5 0.6 29.5 0.1 14.1 0.52 1.99 0.178 (0.09) 0.063 (0.036) 0.115 (0.075)
Sand 1702 85.2 99.3 0.1 14.6 0.1 8.8 0.59 1.99 0.126 (0.08) 0.038 (0.029) 0.088 (0.069)
† �N is sample size, rb is oven dry bulk density, q330 and q15 000 are volumetric water contents at 330 and 15000 cm pressure, AWC is available 

water content calculated as the difference between q330 and q15 000.
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texture classes was generally more similar to measured values 
than gcent demonstrating the improvement in sand and silt esti-
mates obtained in the mcent approach.

The clearest distinction between models of sand, silt, and clay 
was presented in Fig. 4, which showed the R2_q330 and R2_q15000 
by texture class. While the quantifiable significance of differences 
between the three models is debatable, there were noticeable trends 
across most texture classes that indicated R2_q330 and R2_q15000 
of mcent were more similar to Rosetta models that used measured 
values of sand, silt, and clay compared with gcent. Differences be-
tween texture models were more pronounced for q15000 than for 
q330 which may reflect varying sensitivity of the Rosetta model for 
different textures or possible measurement errors. Aside from the 
similarity of mcent and measured models of q330 and q15000, soil 
texture classes showed no clear patterns for the different pressures. 
Values of R2 ranged from 0 to 0.32 with the largest values in loamy 
sand and sandy loam texture classes of q330.

Unlike q330 and q15000, AWC showed positive and negative 
bias for different soil texture classes (Table 4). Clay loam, sandy 
clay, silty clay, and silty clay loam all had positive ME_AWC while 
other textures had negative ME_ AWC. Decomposing the bias re-
ported for overall model performance into individual contribu-

tions by soil texture class provides valuable insight for improve-
ment of PTF models. The greatest ME_ AWC was for sand and 
silt texture classes; however, sand and silt did not have the largest 
bias for either q330 or q15000. URMSE_ AWC of the silt texture 
class was considerably larger than other classes, which is similar 
to the URMSE_q330.

Most PTF models are evaluated with overall performance 
metrics across all samples (Nemes et al., 2006a, 2006b; Schaap 
and Leij, 1998; Schaap et al., 2004); however, comparison of 
model performance by soil texture class can identify limitations 
of various models. This is especially important for PTF models 
developed from limited databases, because the transferability 
may be strongly dependent on data used for model development 
and validation (Schaap and Leij, 1998; Tranter et al., 2009). 
Pachepsky and Rawls (1999) determined that PTFs developed 
for unique soil texture classes improved accuracy relative to the 
entire database, but concluded no advantage was gained by do-
ing so because RMSE was not significantly different from the 
RMSE of the entire dataset. My results showed that error metrics 
were similar when all texture classes were combined, but differ-
ences between models emerged when individual texture classes 
were compared (Fig. 4). Haghverdi et al. (2014) found that 

Fig. 3. Measured vs. simulated percentage of sand (top row) and silt (bottom row) using the geometric centroid and the modified centroid for 
75,736 soil samples from NCSS soil database. Note the binning of values in the geometric centroid. The blank space in modified centroid plot 
reflects gaps in the modified centroid values visible in Fig. 2. Solid blue line is linear model fit and black dashed line is 1:1 relationship. R2 value 
represents adjusted R2 for linear model fit.
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model performance was inversely related to the sample size for a 
given soil texture; however, this trend was not discernable in the 
current dataset. For example, clay and silty clay texture classes in 
this study had the largest bias for both ME_q330 and ME_q15000 
but did not have the smallest sample sizes. In another example, 
the loam texture had the smallest sample size and ME_q15000 for 
that texture class was smaller than the ME_q15000 of the entire 
dataset of all textures. The inverse relationship between sample 
size and model performance found by Haghverdi et al. (2014) 
likely differed from this study because the Rosetta model was 
developed using a different dataset from the NCSS dataset used 
in this study, whereas Haghverdi et al. (2014) developed a new 
PTF.

Differences in water retention by soil texture class support 
the concept that soil hydraulic properties may be a natural way 
to differentiate soils as suggested by recent studies. Twarakavi 
et al. (2010) developed new soil hydraulic classes for the soil 
texture triangle to reorganize estimates of hydraulic soil proper-
ties. Groenendyk et al. (2015) suggested that defining soil types 
should be based on application-specific hydrologic responses 
and that the current structure of the USDA soil texture triangle 
limits interpretations of soil function at landscape scales. To that 
end, de Lannoy et al. (2014) categorized the soil texture triangle 

into 84 smaller mineral classes up to 60% clay and intersected 
this with organic C categories for a total of 253 unique soil 
classes for input to PTFs for a global dataset. Soils with >60% 

Table 2. Mean error (ME), unbiased root mean square error 
(URMSE), and coefficient of determination (R2) for water con-
tent at 330 and 15000 cm pressure and available water holding 
capacity (AWC) for 75,736 soil samples from NCSS soil database. 
Comparisons are between measured values and modeled values 
from Rosetta using three representations of sand, silt and clay.

Water content Measured Geometric centroid Modified centroid

ME
——————— cm3 cm–3———————

q330 –0.079 –0.078 –0.079
q15 000 –0.071 –0.069 –0.070

AWC –0.008 –0.009 –0.008

URMSE

——————— cm3 cm–3———————
q330 0.068 0.070 0.069
q15 000 0.054 0.055 0.054

AWC 0.060 0.060 0.061

Adjusted R2

q330 0.51 0.47 0.49
q15 000 0.64 0.58 0.63
AWC 0.25 0.26 0.25

Table. 3. Mean error (ME) and unbiased root mean square error (URMSE) for water content at 330 and 15000 cm pressure for 
75,736 soil samples from NCSS soil database by texture class. Comparisons are between measured values and modeled values 
from Rosetta using three representations of sand, silt, and clay.

q330 q15 000

Class Measured Geometric centroid Modified centroid Measured Geometric centroid Modified centroid

ME
————————————–————–––––––––——cm3 cm–3—————————––––––––––———————

Clay –0.133 –0.125 –0.134 –0.123 –0.105 –0.117

Clay loam –0.088 –0.086 –0.089 –0.091 –0.086 –0.090

Sandy clay –0.044 –0.038 –0.043 –0.056 –0.047 –0.053

Sandy clay loam –0.050 –0.044 –0.051 –0.047 –0.038 –0.044

Sandy loam –0.050 –0.044 –0.046 –0.025 –0.019 –0.020

Silty clay –0.124 –0.123 –0.125 –0.132 –0.130 –0.132

Silty clay loam –0.091 –0.093 –0.092 –0.112 –0.112 –0.113

Silt loam –0.068 –0.074 –0.066 –0.062 –0.069 –0.064

Silt –0.080 –0.083 –0.079 –0.021 –0.022 –0.021

Loam –0.063 –0.063 –0.064 –0.055 –0.056 –0.055

Loamy sand –0.076 –0.071 –0.073 –0.041 –0.041 –0.041

Sand –0.095 –0.093 –0.098 –0.036 –0.037 –0.037

URMSE

——————————––––––––––———————cm3 cm–3———————————————––––––––––———

Clay 0.067 0.072 0.067 0.047 0.053 0.045

Clay loam 0.055 0.056 0.054 0.041 0.042 0.039

Sandy clay 0.067 0.067 0.067 0.040 0.040 0.039

Sandy clay Loam 0.056 0.059 0.057 0.037 0.041 0.037

Sandy loam 0.070 0.073 0.072 0.040 0.043 0.041

Silty clay 0.051 0.053 0.051 0.040 0.043 0.040

Silty clay loam 0.048 0.049 0.049 0.034 0.037 0.034

Silt loam 0.062 0.068 0.064 0.040 0.043 0.039

Silt 0.077 0.077 0.077 0.038 0.038 0.037

Loam 0.062 0.064 0.061 0.042 0.045 0.042

Loamy sand 0.076 0.076 0.076 0.035 0.035 0.035
Sand 0.072 0.073 0.074 0.027 0.028 0.028
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clay were not considered because of the inability of some PTFs 
to accurately predict hydraulic parameters for high clay soils. 
The clay texture class had the largest ME_q330 and ME_q15000 
of all classes, which supports the rationale of de Lannoy et al. 
(2014) and may reflect the large size of the clay texture class in 
the USDA texture triangle.

Potential Applications of a Modified Centroid 
Approach for Particle Size

I present a method of converting discrete soil texture infor-
mation to continuous estimates of sand and silt from discrete soil 
texture class information combined with field estimates of clay. 
This conversion provides two major benefits for the soil model-
ing community. The first and potentially most important advan-
tage is conversion of the data type from discrete to continuous, 
which represents an information gain from data that already 
exist for many soil databases and can be easily obtained in fu-
ture sampling efforts. Continuous data arguably have more util-
ity than discrete data types (Royston et al., 2006). For example, 
continuous data generally provide more resolution than discrete 
data resulting in more quantitative information and continuous 
data can be applied to more modeling approaches than discrete 

data. Continuous variables can be assigned as discrete, but the 
reverse is not true. At best, soil texture class can be ranked into 
an ordinal dataset (e.g., sandy to clayey). The gcent approach of 
converting texture class data to continuous variables of sand, silt, 
and clay has previously been one of the only options for this con-
version which would result in a relatively small number of unique 
centroids for a given dataset (e.g., 12 centroids for the USDA 
texture classification). In contrast, the 250 unique centroid loca-
tions in mcent effectively provided more potential resolution for 
sand and silt estimates than the 12 centroids used in gcent which 
linearized the measured versus modeled values.

The conversion of discrete soil texture class data to con-
tinuous sand, silt, and clay values makes many soil samples 
available for more quantitative analyses. Increasing sample size 
of continuous variables can expand the utility of soil databases 
for many applications. For example, more complete databases 
will foster improved soil hydraulic property modeling and po-
tential application of PTFs to larger areas PTFs, as continuous 
variables (e.g., sand, silt, clay) often outperform discrete vari-
ables (e.g., texture class; Schaap et al., 2001, 2004). The spatial 
variability of soil properties requires adequate sample size to 
reduce errors in mapping and modeling. Point data are often a 

Fig. 4. Coefficient of determination (R2) for linear models comparing measured values of water content at field capacity (330 cm) and permanent 
wilting point (15000 cm) to the same variables predicted with the Rosetta pedotransfer function by soil texture class. Rosetta predictions were 
made using measured sand, silt, clay, bulk density, geometric centroid estimates of sand, silt, and clay with measured bulk density and modified 
centroid estimates of sand, silt and clay with measured bulk density. Values represent 75,736 soil samples in the NCSS soil database.
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limiting factor for developing soil maps because the invento-
ries are expensive and time-consuming to complete.

Soil texture class maps are commonly the focus of DSM 
projects (e.g., Ballabio et al., 2016); however, continuous soil 
property maps often have utility for a wider range of appli-
cations. Modeling continuous properties in space can utilize 
spatial autocorrelation for prediction, which is the underly-
ing foundation of most spatial interpolation techniques. Class 
variables cannot easily utilize spatial autocorrelation and are 
often modeled with techniques like logistic regression and 
classification trees that do not account for location (Brungard 
et al., 2015; Heung et al., 2016). The mcent approach or oth-
er similar models should be employed in a spatial context to 
evaluate the utility for DSM.

The concept of estimating sand, silt, and clay when at 
least one of those fractions is estimated or known along with 
a texture class, is a flexible approach that can be applied to any 
soil classification system. This can overcome problems asso-
ciated with transforming data from one classification system 
to another. We should better utilize information in current 
databases to achieve the greatest information output from 
previously collected soil data. Collecting estimates of at least 
one particle size separate along with soil texture class should 
be standard practice for land management agencies to provide 
additional point data for soil modeling efforts.

CONCLUSION
I present a new approach for predicting continuous es-

timates of sand and silt and from easily obtainable field es-
timates of soil texture class and clay percentage. The mcent 
approach produced a continuous distribution of values for 
sand and silt whereas the gcent model resulted in a stair-step 
pattern for each of the 12 texture classes. Estimated values of 
sand, silt, and clay were input to the Rosetta PTF model to 
test the sensitivity of different inputs for predicting measured 
values of water content. Rosetta underestimated water con-
tent for all values of q330 and q15000. Comparison of measured 
water content to output from Rosetta indicated that centroid 
approaches were similar to the measured sand, silt, and clay 
approach for the overall dataset; however, mcent was more 
similar to the measured texture model than gcent for most 
soil texture classes. Performance of the Rosetta model using 
measured sand, silt, and clay was moderate and differed by 
soil texture class, and highlighted clay and silt texture classes 
as having the greatest error. The example of a modified centroid 
approach in this study using the USDA texture classes can be 
applied to any other texture classifications if adequate data are 
available and illustrates the importance of collecting texture class 
and clay estimates in the field. Converting discrete soil texture 
information to continuous sand, silt and clay values will enhance 
our ability to inventory soil properties and quantify soil process-
es for numerous applications.
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